Improved apparent distance detection model of low-level-lightnight vision system
-
摘要: 视距是评估微光夜视成像系统性能的一个重要参数。随着微光夜视探测技术的发展,经典视距模型的视距仿真结果与实测结果出现了一些偏差,特别是在10−3 lx低照度条件下视距仿真结果不甚理想,这对微光夜视仪在实际应用中造成了很大的阻碍。针对这一问题,从微光成像系统成像链路的三个环节对经典视距模型进行修正:考虑大气透过率对微光夜视系统视距的影响并对经典视距模型中的大气透过率因子进行修正;基于像增强器噪声因子对视距模型进行修正;考虑人眼视觉传递特性对微光夜视系统视距的影响,在系统的传递函数模型中加入了简化的人眼视觉模型。进而推导出改进的视距模型。结合野外试验数据,验证了改进视距模型的有效性和实用性,这对于微光夜视系统的设计、评估和应用具有一定的指导性意义。Abstract: Apparent distance is an important parameter to evaluate the performance of low-level-light (LLL) night vision imaging system. With the development of LLL night vision detection technology, the simulation results of the classical apparent distance model show some deviations from the actual measurement data, especially the simulation results are not ideal under the low illumination of 10-3 lx, which causes great obstacles to the practical application of the LLL night vision system. Aiming at this problem, the classical apparent distance model was modified from three aspects: the first is considering the influence of atmospheric transmittance on the apparent distance of LLL night vision system and modifying the atmospheric transmittance factors in the classical apparent distance model, the second is optimizing the apparent distance model based on noise factors of image intensifier, the third is considering the influence of human visual transmission characteristics on the apparent distance of LLL night vision system, and the simplified human visual system was added into the transfer function model of the system. The improved apparent distance model was derived, and its effectiveness as well as practicability were verified by the field test data, which had certain guiding significance for the design, evaluation and application of LLL night vision system.
-
表 1 复合模型中一些参数的典型值
Table 1 Typical values for some parameters in compound model
K T / sec Xe / deg Φ0 / (sec·deg2) Ne/ cyc 3.4 0.1 12 3×10−8 15 表 2 复合模型中一些参数的典型值
Table 2 Typical values for some parameters in compound model
ηe A0 / (cyc·deg−1) P / (photons /
(td·sec·deg2))σ0 / deg Csph /
(deg·mm−3)0.03 8 1.285×106 0.0137 1×10−4 表 3 视距模型计算所需参数
Table 3 Parameters required for calculation
Parement D/mm f′o/mm Q δe gm t/s Value 18 26 0.3 8 10813.17 0.2 Parement Ht/m Ne ε E0/lx τd R′/mm Value person: 0.5
vehicle: 2person: 4
vehicle: 6person: 28
vehicle: 2410−3 0.8 9.7 Parement l/mm Г X0/deg Value 10 3.4 28 表 4 像增强器的调制传递函数
Table 4 Modulation transfer function of image intensifier
Ak/(lp·mm−1) 2.5 7.5 15 25 30 MTF 0.86 0.65 0.42 0.22 0.15 表 5 与光谱分布有关的参数计算结果
Table 5 Calculation results for parameters related to spectral distribution
Full Moonlight Stars Background Transparent Green vegetation Transparent Green vegetation Target Man Vehicle Man Vehicle Man Vehicle Man Vehicle ρ 0.5778 0.5484 0.2404 0.211 0.5844 0.5456 0.3686 0.3298 C0 0.749 0.8072 0.1767 0.3156 0.6932 0.8158 0.2403 0.4894 Cd 0.943 0.9402 0.8732 0.858 0.626 0.6098 0.6136 0.4858 αλ 0.3924 0.2678 0.66 0.3645 1.3715 0.7917 2.636 1.0935 表 6 晴朗星光透空背景条件下微光夜视仪对人和车辆的视距
Table 6 Apparent distance of LLL night vision equipment to people and vehicles under clear starlight and full moonlight conditions
m Man Vehicle Experimental data 100.0 200.0 Original model 87.0 208.0 Modified model 92.14 205.60 -
[1] ROSE A. The sensitivity performance of the human eye on an absolute scale[J]. Journal of the Optical Society of America,1948,38(2):196-208. doi: 10.1364/JOSA.38.000196 [2] DEVRIES H L. The quantum character of light and its bearing upon threshold of vision[J]. Physica,1954,7(7):553-556. [3] COLTMAN J W, ANDERSON A E. Noise limitations to resolving power in electronic imaging[J]. Proceedings of the IRE,1960,48(5):858-865. doi: 10.1109/JRPROC.1960.287622 [4] SCHAGEN P. Electronic aids to night vision[J]. Electronics and Power,1975,21(7):437. doi: 10.1049/ep.1975.0482 [5] ROSELLF A, WILLSON R H. Basics of detection recognition and identification in clectro-optical formed imagery[J]. International Society for Optics and Photonics, 1973, 33: 107-119. [6] SCHNITZLER A D. Visual systems for night vision[M]//Photoelectronic Imaging Devices. Boston, MA: Springer US, 1971: 89-108. [7] RICHARDS E A. Limitations in optical imaging devices at low light levels[J]. Applied Optics,1969,8(10):1999-2005. doi: 10.1364/AO.8.001999 [8] BLACKLER F G. Image intensifiers and night viewing system performance[C]// Electron-Optics/Laser International'82 UK Conference Proceedings. London: Butterworth Scientific Press, 1982: 130-139. [9] 邹异松. 成象器件的图象探测特性[J]. 北京工业学院学报,1982,2(1):17-28.ZOU Yisong. Image detection characteristics of imaging devices[J]. Journal of Beijing Institute of Technology,1982,2(1):17-28. [10] 艾克聪, 周立伟, 曾桂林, 等. 微光夜视系统新的阈值探测理论和视距探测方程研究[J]. 应用光学,2002,23(5):1-6.AI Kecong, ZHOU Liwei, ZENG Guilin, et al. Research on the new threshold detection theory and apparent distance detecting equation for low light level imaging system[J]. Journal of Applied Optics,2002,23(5):1-6. [11] 刘磊, 常本康. 微光成像系统视距理论公式的修正[J]. 光学学报,2003,23(6):761-765.LIU Lei, CHANG Benkang. The revised formula for visual range of low light level imaging system[J]. Acta Optica Sinica,2003,23(6):761-765. [12] 张竹平, 李力, 贾星蕊, 等. 微光夜视仪分辨力计算方程的修正[J]. 红外技术,2014,36(11):930-933.ZHANG Zhuping, LI Li, JIA Xingrui, et al. Correction on resolution calculation formula for low light level night vision device[J]. Infrared Technology,2014,36(11):930-933. [13] 刘松涛, 王博林, 王龙涛. 微光夜视仪的作用距离估算与仿真[J]. 激光与红外,2016,46(4):462-465.LIU Songtao, WANG Bolin, WANG Longtao. Estimation and simulation of operation range for low-light-level night vision device[J]. Laser & Infrared,2016,46(4):462-465. [14] 金伟其, 张琴, 王霞, 等. 一种改进的直视型微光夜视系统视距模型[J]. 光子学报,2020,49(4):61-70.JIN Weiqi, ZHANG Qin, WANG Xia, et al. An improved apparent distance model for direct-viewlow-light-level night vision system[J]. Acta Photonica Sinica,2020,49(4):61-70. [15] 蒋先进. 微光电视[M]. 北京: 国防工业出版社, 1984: 389-411.JIANG Xianjin. Low-light-level television[M]. Beijing: National Defense Industry Press, 1984: 389-411. [16] BELL R L. Noise figure of the MCP image intensifier tube[J]. IEEE Transactions on Electron Devices,1975,22(10):821-829. doi: 10.1109/T-ED.1975.18229 [17] JACOBSON R E. An evaluation of image quality metrics[J]. The Journal of Photographic Science,1995,43(1):7-16. doi: 10.1080/00223638.1995.11738604 [18] BARTEN P G J. Formula for the contrast sensitivity of the human eye[J]. SPIE, 2003, 5294: 231-238. [19] CAMPBELL F W, ROBSON J G. Application of Fourier analysis to the visibility of gratings[J]. The Journal of Physiology,1968,197(3):551-566. doi: 10.1113/jphysiol.1968.sp008574 [20] WATANABE A, MORI T, NAGATA S, et al. Spatial sine-wave responses of the human visual system[J]. Vision Research,1968,8(9):1245-1263. doi: 10.1016/0042-6989(68)90031-X [21] 刘磊. 激光助视/微光夜视系统视距评估研究[D]. 南京: 南京理工大学, 2005.LIU Lei. Visual range evaluation of LLL night vision system with laser illuminator[D]. Nanjing: Nanjing University of Science and Technology, 2005. [22] 向世明, 倪国强. 光电子成像器件原理[M]. 北京: 国防工业出版社, 1999: 234-235.XIANG Shiming, NI Guoqiang. The principle of photoelectronic imaging devices[M]. Beijing: National Defense Industry Press, 1999: 234-235. [23] 白廷柱, 金伟其. 光电成像原理与技术[M]. 北京: 北京理工大学出版社, 2006: 31-51.BAI Tingzhu, JIN Weiqi. Principle and technology of photoelectric imaging[M]. Beijing: Beijing Insititute of Technology Press, 2006: 31-51. [24] 于超, 张蕾. 南京北郊大气能见度影响因子研究[J]. 三峡生态环境监测,2019,4(1):56-60.YU Chao, ZHANG Lei. The influence factors of atmospheric visibility in Nanjing’s northern suburb[J]. Ecology and Environmental Monitoring of Three Gorges,2019,4(1):56-60. -