Research on thermal optical properties and thermal control technology of primary mirror assembly
-
摘要: 针对共光路系统对环境温度的适应性问题,以温度-光学变形特性研究为基础,提出了一种基于综合传热的主镜组件分区域热控方法。建立了主镜组件的传热模型并分析了典型热控工况下的温度分布特性;对不同材质的主镜进行了热仿真,以热光学试验结果修正模型,使主镜温度场的仿真与实测结果绝对偏差小于1.4 ℃,同时确定了主镜组件的温度梯度控制阈值;采用分区传热策略,使主镜组件达到高温升水平、低温度梯度的热控目标。以某主镜组件为对象进行了仿真与试验:当主镜平均温升达到16 ℃以上时,镜体轴向温度梯度≤2.5 ℃、径向与周向温度梯度≤2.4 ℃,主镜面形变化量小于0.005 λ,该结果可为共光路系统的整体热控方案设计提供优化思路。Abstract: Aiming at the adaptability of common optical path system to ambient temperature, a thermal control method of primary mirror assembly based on comprehensive heat transfer is proposed based on the temperature optical deformation characteristics. The heat transfer model of the primary mirror assembly is established, and the temperature distribution under typical conditions are analyzed; The thermal simulation of the main mirror with different materials is carried out, and the model is modified with the thermal optical test results, so that the absolute deviation between the simulation and the measured results of the temperature is less than 1.4 ℃. At the same time, the temperature gradient control threshold of the assembly is determined; On this basis, the zoning heat transfer strategy is adopted to make the main mirror assembly reach the goal of high temperature rise level and low temperature gradient. Taking a main mirror assembly as the object, the simulation and test are carried out, When the average temperature rise of the main mirror reaches more than 16 ℃, the axial temperature gradient of the mirror is ≤ 2.5 ℃, the radial and circumferential temperature gradient is ≤ 2.4 ℃, and the change of the main mirror shape is less than 0.005 λ,The results can provide an optimization idea for the overall thermal control design of the common optical path system.
-
Key words:
- common optical path system /
- primary mirror /
- temperature gradient /
- thermal control
-
表 1 碳化硅主镜温度梯度与面形精度
Table 1 Temperature gradient and Surface shape accuracy of Sic primary mirror
加热功率/W 15 34 温度/℃ 轴向梯度 0.9 1.6 径向梯度 0.5 1.2 周向梯度 0.3 0.9 平均温升 8.3 21.1 面形精度/λ RMS 0.072 0.13 RMS(祛除球差) 0.021 0.023 -
[1] 王惠林, 刘吉龙, 吴雄雄, 等. 航空光电侦察图像质量影响因素分析[J]. 应用光学,2021,42(5):817-829. doi: 10.5768/JAO202142.0502001WANG Huilin, LIU Jilong, WU Xiongxiong, et al. Analysis of image quality influencing factors for aerial electro-optical detection[J]. Journal of Applied Optics,2021,42(5):817-829. doi: 10.5768/JAO202142.0502001 [2] 吉书鹏. 机载光电载荷装备发展与关键技术[J]. 航空兵器,2018(6):3-12. doi: 10.19297/j.cnki.41-1228/tj.2017.06.001JI Shupeng. Developmet and key technology of airborne photoelectric load equipment[J]. Aero Weaponry,2018(6):3-12. doi: 10.19297/j.cnki.41-1228/tj.2017.06.001 [3] 廖劲峰, 丁亚林, 姚园. 机载折反式光学系统的无热化设计[J]. 液晶与显示,2019,34(1):43-50.LIAO Jingfeng, DING Yalin, YAO Yuan. Athermalized design of airborne mirror-lens optical system[J]. ChineseJournal of Liquid Crystals and Displays,2019,34(1):43-50. [4] 刘福贺. 航空光电平台光学系统温度适应性及热控方法研究[D]. 长春: 中国科学院大学(长春光学精密机械与物理研究所), 2020 : 2-3.LIU Fuhe. Research on the temperature adaptability and thermal control method for the optical system of aviation platform [D]. Changchun: Changchun Institute of Optics, Fine Mechanics and Physics, ChineseAcademy of Sciences, 2020: 2-3. [5] 随愿愿. 轻小型三线阵航摄仪热控设计[D]. 长春: 中国科学院大学(长春光学精密机械与物理研究所), 2019 : 8-9.SUI Yuanyuan. Thermal control design of a light-small three linear array aerial camera [D]. Changchun: Changchun Institute of Optics, Fine Mechanics and Physics, ChineseAcademy of Sciences, 2019: 8-9. [6] 何宴, 王继红, 彭起. 大口径轻质主镜热特性分析[J]. 光电工程,2013,41(6):63-70.HE Yan, WANG Jihong, PENG Qi. Thermal property of large aperturelight primary mirror[J]. Opto-Electronic Engineering,2013,41(6):63-70. [7] 张向明, 姜峰, 孔龙阳, 等. 卡塞格林系统光学装调技术研究[J]. 应用光学,2015,36(4):526-530. doi: 10.5768/JAO201536.0401006ZHANG Xiangming, JIANG Feng, KONG Longyang, et al. Research on optical alignment technology for Cassegrain system[J]. Journal of Applied Optics,2015,36(4):526-530. doi: 10.5768/JAO201536.0401006 [8] BERGMAN T L, LAVINE A S. Fundamentals of heat and mass transfer[M]: 8th ed. Hoboken: John Wiley & Sons, Inc. , 2017: 542-544. [9] 薛文慧, 王惠, 包春慧, 等. 热环境下共形整流罩热辐射特性研究[J]. 应用光学,2017,38(6):999-1005.XUE Wenhui, WANG Hui, BAO Chunhui, et al. Thermal radiation characteristics of conformal dome in aero-dynamic environment[J]. Journal of AppliedOptics,2017,38(6):999-1005. [10] 胡小平, 汪元, 邓雄, 等. 传热传质分析[M]. 北京. 科学出版社, 2021: 155-161.HU Xiaoping, WANG Yuan, DENG Xiong, et al. Analysis of heat and mass transfer[M]. Beijing. Science Press, 2021: 208-211. [11] 张冰强, 向艳超, 薛淑艳, 等. 火星表面热环境对航天器热控影响分析[J]. 中国空间科学技术,2021,41(2):55-62.ZHANG Bingqiang, XIANG Yanchao, XUE Shuyan, et al. Analysis of the influence of Mars surface thermal environment on spacecraft thermal control[J]. Chinese Space Science and Technology,2021,41(2):55-62. [12] 李莉, 刘健贾, 清虎. 机载光电产品关键部件热仿真研究[J]. 电光与控制,2017,24(7):100-104. doi: 10.3969/j.issn.1671-637X.2017.07.021LI Li, LIU Jianjia, QING Hu. Thermal simulation to critical components of airborne photoelectrical equipment[J]. Electronics Optics and Control,2017,24(7):100-104. doi: 10.3969/j.issn.1671-637X.2017.07.021 [13] 张源博, 孔林, 李强, 等. 无载荷舱航空相机的热控设计与试验验证[J]. 航天器环境工程,2022,39(2):153-160. doi: 10.12126/see.2022.02.006ZHANG Yuanbo, KONG Lin, LI Qiang, et al. Thermal control design and test verification of airframe without payload bay[J]. Spacecraft Environment Engineering,2022,39(2):153-160. doi: 10.12126/see.2022.02.006 [14] 王成彬. 提高光机热集成分析精度的关键技术研究[D]. 上海: 中国科学院研究生院( 上海技术物理研究所), 2016: 97-98.WANG Chengbin. The key technology research of improving precision of thermal/ structural/ optical integrated analysis [D] . Shanghai: University of Chinese Academy of Sciences(Shanghai Institute of Technical Physics) , 2016: 97-98. [15] 胡瑞, 程云涛, 陈小安, 等. 空间环境下低膨胀玻璃和SiC轻量化反射镜的热稳定性研究[C]. 成都: 第六届高分辨率对地观测学术年会, 2019.HU Rui, CHENG Yuntao, CHEN Xiaoan , et al. Thermal stability of low expansion glass and SiC lightweight reflector in space environment [C] . Chengdu: Study on Thermal Stability of Low Expansion Glass and SiC Lightweight Mirror in Space Environment. China High Resolution Earth Observation Conference, 2019 [16] 杨勋, 徐抒岩, 马宏财, 等. 径向温度梯度对轻量化反射镜面形精度的影响[J]. 光学精密工程,2019,27(7):1552-1560. doi: 10.3788/OPE.20192707.1552YANG Xun, XU Shuyan, MA Hongcai, et al. Influence of radial temperature gradient on surface figure of lightweight reflective mirror[J]. Optics and Precision Engineering,2019,27(7):1552-1560. doi: 10.3788/OPE.20192707.1552 -