留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

直升机旋翼三维动态变形测量与可视化分析

胡丙华 晏晖

胡丙华, 晏晖. 直升机旋翼三维动态变形测量与可视化分析[J]. 应用光学, 2023, 44(1): 159-167. doi: 10.5768/JAO202344.0103007
引用本文: 胡丙华, 晏晖. 直升机旋翼三维动态变形测量与可视化分析[J]. 应用光学, 2023, 44(1): 159-167. doi: 10.5768/JAO202344.0103007
HU Binghua, YAN Hui. 3D dynamic deformation measurement and visual analysis of helicopter rotor[J]. Journal of Applied Optics, 2023, 44(1): 159-167. doi: 10.5768/JAO202344.0103007
Citation: HU Binghua, YAN Hui. 3D dynamic deformation measurement and visual analysis of helicopter rotor[J]. Journal of Applied Optics, 2023, 44(1): 159-167. doi: 10.5768/JAO202344.0103007

直升机旋翼三维动态变形测量与可视化分析

doi: 10.5768/JAO202344.0103007
基金项目: 直升机旋翼流场丝线可视化显示及重构技术研究(61422200103202012)
详细信息
    作者简介:

    胡丙华(1986—),女,硕士,高级工程师,主要从事摄影测量与应用以及光电测试方面的研究。E-mail:hbh125@qq.com

  • 中图分类号: TN29;V217+.3

3D dynamic deformation measurement and visual analysis of helicopter rotor

  • 摘要: 针对直升机旋翼动载荷飞行试验测试需求,提出一种直升机旋翼三维动态变形测量与可视化分析方法。首先,根据直升机旋翼的结构特点和高速旋转特性,设计了以一组双目高清摄像头为核心的旋翼动态变形影像测量与监控及分析系统;其次,基于双目立体视觉测量理论,论述了测量系统标定、实时单点变形测量、散斑影像匹配、旋翼表面三维重建与三维动态变形可视化分析原理/方法;最后,在地面进行了模拟实测环境的仿真试验,实现了试验系统搭建、试验数据采集、处理与分析。试验结果证明,该方法可获得最大误差优于4 mm的定位测量精度,能很好地实现直升机旋翼三维动态变形测量,为飞行试验旋翼载荷测试数据分析等提供直观、可靠的数据与技术支撑。
  • 图  1  旋翼动态变形测量与可视化分析系统组成图

    Fig.  1  Composition of rotor dynamic deformation measurement and visual analysis system

    图  2  一体化随动视频采集与处理子系统组成与系统信号传输结构示意图

    Fig.  2  Composition of integrated servo video acquisition and processing subsystem and signal transmission structure of whole system

    图  3  系统实时数据处理过程图

    Fig.  3  Process diagram of real-time data processing of system

    图  4  摄像头布局示意图

    Fig.  4  Schematic diagram of camera layout

    图  5  编码标志点检测、识别与匹配流程图

    Fig.  5  Flow chart of detection, identification and matching of coded mark points

    图  6  基于数字散斑相关的直升机旋翼变形测量算法实现流程图

    Fig.  6  Algorithm implementation process of helicopter rotor deformation measurement based on digital speckle correlation

    图  7  3D测量试验系统连接拓扑图

    Fig.  7  Connection topology diagram of 3D measurement test system

    图  8  重建结果

    Fig.  8  Reconstruction results

    图  9  平板上邻近两点的运动变化曲线

    Fig.  9  Motion change curves of adjacent two points on plate

    图  10  平板上沿纵向较远两点的运动变化曲线

    Fig.  10  Motion change curves of two points along longitudinal distance on plate

    表  1  编码标志点的视觉测量计算结果与全站仪测量数据的对比分析

    Table  1  Comparison and analysis of visual measurement calculation results of coded mark points and measurement data of total station

    点号全站仪测量数据全场变形测量软件计算数据坐标对比/mm
    Xc/mmYc/mmZc/mmX/mmY/mmZ/mmdXdYdZ
    36980.0−9.71 156.8979.8−7.31 160.0−0.22.43.2
    37560.011.0930.5560.612.2933.70.61.23.2
    381 019.112.7505.91 020.713.5506.71.60.80.8
    39613.132.2314.1614.732.6317.11.60.43.0
    401 055.582.6−5.71 056.183.6−2.50.61.03.2
    41982.2203.3−483.5983.0204.1−480.90.80.82.6
    42555.8136.7−240.9556.6136.5−238.50.8−0.22.4
    43695.1285.9−847.5695.7285.1−846.30.6−0.81.2
    441 096.3347.5−1 056.31 096.7347.3−1 055.50.4−0.20.8
    451 555.8269.8−864.11 558.4269.8−863.92.60.00.2
    461 374.7142.7−281.41 375.7143.7−278.81.01.02.6
    471 410.748.5174.71 410.350.3178.5−0.41.83.8
    481 456.73.9665.71 457.56.3667.70.82.42.0
    491 338.0427.1−1 140.51 339.0428.3−1 138.11.01.22.4
    50960.0597.6−1 157.2959.8598.2−1 154.6−0.20.62.6
    Min-error/mm0.20.00.2
    Max-error/mm2.62.43.8
    Mean square error/mm1.11.22.5
    下载: 导出CSV
  • [1] 陈洞滨, 熊邦书, 黄建萍, 等. 基于标记点的直升机旋翼动态三维测量方法[J]. 半导体光电,2013,34(5):904-908. doi: 10.16818/j.issn1001-5868.2013.05.042

    CHEN Dongbin, XIONG Bangshu, HUANG Jianping, et al. Dynamic 3D-measurement method of helicopter rotor based on marked points[J]. Semiconductor Optoelectronics,2013,34(5):904-908. doi: 10.16818/j.issn1001-5868.2013.05.042
    [2] 徐明, 韩东, 李建波. 变转速旋翼气动特性分析及试验研究[J]. 航空学报,2013,34(9):2047-2056.

    XU Ming, HAN Dong, LI Jianbo. Analysis and experimental investigation on the aerodynamic characteristics of variable speed rotor[J]. Acta Aeronautica et Astronautica Sinica,2013,34(9):2047-2056.
    [3] 熊奎. 基于双目视觉的直升机旋翼桨叶挥舞角测量方法研究[D]. 南昌: 南昌航空大学, 2015.

    XIONG Kui. Research on flapping angle measurement of helicopter rotor blade based on binocular vision[D]. Nanchang: Nanchang Hangkong University, 2015.
    [4] 习娟, 吴裕平, 陈平剑. 直升机旋翼载荷飞行测试结果的分析与应用[J]. 南京航空航天大学学报,2011,43(3):419-422. doi: 10.3969/j.issn.1005-2615.2011.03.024

    XI Juan, WU Yuping, CHEN Pingjian. Analysis and application of flight test results for helicopter rotor systems loads[J]. Journal of Nanjing University of Aeronautics & Astronautics,2011,43(3):419-422. doi: 10.3969/j.issn.1005-2615.2011.03.024
    [5] 吴杰, 杨卫东, 虞志浩. 旋翼桨叶结构载荷计算方法比较研究[J]. 振动与冲击,2014,33(7):210-214. doi: 10.13465/j.cnki.jvs.2014.07.035

    WU Jie, YANG Weidong, YU Zhihao. Comparison among rotor blade structural load calculation methods[J]. Journal of Vibration and Shock,2014,33(7):210-214. doi: 10.13465/j.cnki.jvs.2014.07.035
    [6] 陈铭杰. 直升机旋翼桨叶弯矩与变形分布式光纤智能监测技术研究[D]. 南京: 南京航空航天大学, 2019.

    CHEN Mingjie. Research on distributed optical fiber intelligent monitoring technology of helicopter rotor blade bending moment and deformation[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2019.
    [7] UEHARA D, CAMERON C, SIROHI J. Deformation measurement and modal identification of an extremely flexible rotor blade[C]//Asian-Australian Rotorcraft Forum. Kanazawa: IEEE, 2017: 24-26.
    [8] BODEN F, MAUCHER C. Advanced in-flight measurement techniques: Chapter 13[M]. Heidelberg: Springer, 2013: 195-213.
    [9] LANARI C, STASICKI B, BODEN F, et al. Advanced in-flight measurement techniques: Chapter 9[M]. Heidelberg: Springer, 2013: 133-153.
    [10] BODEN F, KIRMSE T, JENTINK H. Image pattern correlation technique[M]. Norderstedt: Springer, 2013: 63-85.
    [11] 吴国宝, 吴志刚, 易晖, 等. 基于三维数字影像的直升机旋翼运动参数测量方法研究[J]. 光电技术应用,2016,31(2):76-80. doi: 10.3969/j.issn.1673-1255.2016.02.019

    WU Guobao, WU Zhigang, YI Hui, et al. Research on motion parameter measurement of helicopter rotor blade based on three-dimensional digital image[J]. Electro-Optic Technology Application,2016,31(2):76-80. doi: 10.3969/j.issn.1673-1255.2016.02.019
    [12] 韩涛, 吴衡. 基于立体视觉的直升机旋翼桨叶三维动态变形测量[J]. 科学技术与工程,2018,18(8):322-327. doi: 10.3969/j.issn.1671-1815.2018.08.054

    HAN Tao, WU Heng. 3D dynamic deformation measurement of helicopter rotor blades based on stereovision[J]. Science Technology and Engineering,2018,18(8):322-327. doi: 10.3969/j.issn.1671-1815.2018.08.054
    [13] 左承林, 马军, 岳廷瑞, 等. 基于双目立体视觉的直升机旋翼桨叶位移变形测量方法[J]. 实验流体力学,2020,34(1):87-95. doi: 10.11729/syltlx20190071

    ZUO Chenglin, MA Jun, YUE Tingrui, et al. Displacement and deformation measurements of helicopter rotor blades based on binocular stereo vision[J]. Journal of Experiments in Fluid Mechanics,2020,34(1):87-95. doi: 10.11729/syltlx20190071
    [14] 虞志浩, 杨卫东, 张呈林. 基于Broyden法的旋翼多体系统气动弹性分析[J]. 航空学报,2012,33(12):2171-2182.

    YU Zhihao, YANG Weidong, ZHANG Chenglin. Aeroelasticity analysis of rotor multibody system based on broyden method[J]. Acta Aeronautica et Astronautica Sinica,2012,33(12):2171-2182.
    [15] 张永军. 基于序列图像的视觉检测理论与方法[M]. 武汉: 武汉大学出版社, 2008.

    ZHANG Yongjun. Theory and method of vision detection based on sequence image[M]. Wuhan: Wuhan University Press, 2008.
    [16] 李晓明, 姚剑, 张继福. 摄像机畸变模型的比较与选择[J]. 计算机辅助设计与图形学学报,2015,27(5):824-831. doi: 10.3969/j.issn.1003-9775.2015.05.007

    LI Xiaoming, YAO Jian, ZHANG Jifu. Comparison and selection of camera models with lens distortion[J]. Journal of Computer-Aided Design & Computer Graphics,2015,27(5):824-831. doi: 10.3969/j.issn.1003-9775.2015.05.007
    [17] 张剑清, 潘励, 王树根. 摄影测量学[M]. 武汉: 武汉大学出版社, 2006.

    ZHANG Jianqing, PAN Li, WANG Shugen. Digital Photogrammetry[M]. Wuhan: Wuhan University Press, 2006.
    [18] 魏斌, 梁晋, 李洁, 等. 大型上单翼飞机机翼三维全场变形测量方案[J]. 航空学报,2017,38(7):172-181.

    WEI Bin, LIANG Jin, LI Jie, et al. 3D full-field wing deformation measurement method for large high-wing airplanes[J]. Acta Aeronautica et Astronautica Sinica,2017,38(7):172-181.
  • 加载中
图(10) / 表(1)
计量
  • 文章访问数:  108
  • HTML全文浏览量:  54
  • PDF下载量:  9
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-01-21
  • 修回日期:  2022-05-24
  • 网络出版日期:  2022-08-20
  • 刊出日期:  2023-01-17

目录

    /

    返回文章
    返回