Remote sensing ship critical part detection network based on semantic feature
-
摘要: 在近岸场景中,受背景影响,舰船关重部位误检概率高、检测精度低。针对以上问题,提出了一种基于语义特征的舰船关重部位检测网络,并命名为CPDNet(critical part detection network)。通过优化网络结构及引入注意力机制,提升网络的特征表达能力以及对关重部位的感知能力;基于语义信息,设计了语义掩膜模块,以降低背景对检测精度的影响;增加角度参数,使网络适用于具有方向性的目标;构建了舰船关重部位数据集,命名为CP-Ship,以验证所提网络的有效性。在CP-Ship数据集上的实验结果表明:所提网络的平均精度比RetinaNet提高了11.35%,与其他网络模型相比,在检测精度和速度均表现优异。Abstract: In near-shore scenes, under the influence of background, the probability of false detection and low detection accuracy of ship critical parts are high. To address the above problems, this paper proposes a detection network for ship critical parts based on semantic features, which named CPDNet (critical part detection network). Firstly, by optimizing the network structure and adopting attention mechanism, the feature expression ability and the perception ability of the ship's critical parts are improved. Secondly, based on semantic information, a semantic mask module is designed to reduce the impact of background on detection accuracy. In addition, the angle parameter is added to make the network applicable to targets with orientation. Finally, a ship's critical parts dataset, named CP-Ship, is constructed to verify the effectiveness of the proposed network. The experimental results on the CP-Ship dataset show that the average accuracy of the proposed network is 11.35% higher than RetinaNet. Compared with other network models, the proposed network performs well in both detection accuracy and speed.
-
Key words:
- deep learning /
- remote sensing /
- critical part detection /
- semantic feature
-
表 1 SFEM各层的详细参数
Table 1 Detailed parameters of each SFEM layer
卷积层 通道数
(输入)通道数
(输出)大小
(输入)大小
(输出)Deconv 1 4 096 2 048 W×H 2W×2H Conv 1 2 048 1 024 2W×2H 2W×2H Deconv 2 2 048 1 024 2W×2H 4W×4H Conv 2 1 024 512 4W×4H 4W×4H Conv 3 512 128 4W×4H 4W×4H Conv 4 128 64 4W×4H 4W×4H Conv 5 64 2 4W×4H 4W×4H 表 2 CP-Ship数据集详细信息
Table 2 Details of CP-Ship dataset
数据集 CP-Ship 图像数量 关重部位个数 训练集 812 2 295 测试集 203 561 总计 1 015 2 856 表 3 膨胀结构元素尺寸选取
Table 3 Selection of expansion structure element size
结构元素尺寸 AP/% 结构元素尺寸 AP/% 3×3 68.67 13×13 71.38 5×5 69.69 15×15 70.97 7×7 70.28 17×17 69.94 9×9 71.25 19×19 68.32 11×11 71.76 21×21 66.46 表 4 消融实验结果
Table 4 Experiment results of ablation
RetinaNet 角度参数 FE-FPN SMN AP/% √ 60.41 √ √ 62.64 √ √ √ 66.45 √ √ √ √ 71.76 表 5 不同网络模型的定量结果
Table 5 Quantiative results of different network models
类别 方法 主干网络 锚框类型 TP FP FN AP/% FPS 双阶段网络 Faster R-CNN[9] ResNet-50 水平框 411 152 150 65.78 19.2 ReDet[25] ResNet-50 旋转框 454 103 107 75.24 3.1 Dynamic R-CNN[26] ResNet-50 水平框 400 130 161 63.85 20.5 Oriented R-CNN[27] ResNet-50 旋转框 423 169 138 68.39 11.8 单阶段网络 YOLOv3[28] DarkNet-53 水平框 413 84 148 66.49 51.8 R3Det[15] ResNet-50 旋转框 393 146 168 64.28 11.3 RetinaNet[13] ResNet-50 水平框 387 229 174 60.41 23.2 CFA[29] ResNet-50 旋转框 414 225 306 63.61 19.3 CPDNet ResNet-50 旋转框 433 150 128 71.76 12.5 -
[1] HUANG Z. A sea-land segmentation algorithm based on graph theory[C]//2nd ISPRS International Conference on Computer Vision in Remote Sensing (CVRS 2015), Xiamen, China: ISPRS, 2016: 990111. [2] XU J, FU K, SUN X. An invariant generalized Hough transform based method of inshore ships detection[C]//2011 International Symposium on Image and Data Fusion. Tengchong, China: IEEE, 2011: 1-4. [3] 牛戈, 陈小前, 季明江, 等. 基于注意力机制特征重建网络的舰船目标检测[J]. 上海航天,2021,38(4):128-136. doi: 10.19328/j.cnki.2096-8655.2021.04.017NIU G, CHEN X Q, JI M J, et al. Ship detection with feature reconstruction network based on attention mechanism[J]. Aerospace Shanghai,2021,38(4):128-136. doi: 10.19328/j.cnki.2096-8655.2021.04.017 [4] 李晨瑄, 顾佼佼, 王磊, 等. 多尺度特征融合的Anchor-Free轻量化舰船要害检测算法[J/OL]. 北京航空航天大学学报: 1-162-08-31]. DOI: 10.13700/j. bh. 1001-5965.2021. 0050. LI C X, GU J J, WANG L, et al. Warship’s vital parts detection algorithm based on lightweight Anchor-Free network with multi-scale feature fusion[J/OL]. Journal of Beijing University of Aeronautics and Astronautics: 1-16[2022-08-31]. DOI:10.13700/j.bh.1001-5965.2021.0050. [5] 李晨瑄, 钱坤, 胥辉旗. 基于深浅层特征融合的舰船要害关键点检测算法[J]. 系统工程与电子技术,2021,43(11):3239-3249. doi: 10.12305/j.issn.1001-506X.2021.11.24LI C X, QIAN K, XU H Q. Key-points detection algorithm based on fusion of deep and shallow features for warship’s vital part[J]. Systems Engineering and Electronics,2021,43(11):3239-3249. doi: 10.12305/j.issn.1001-506X.2021.11.24 [6] 李晨瑄, 李湉雨, 李梓正, 等. 智能化舰船要害检测、轨迹预测与位姿估计算法[J/OL]. 北京航空航天大学学报: 1-182-08-31]. DOI: 10.13700/j. bh. 1001-5965.2021. 0253. LI C X, LI T Y, LI Z Z, et al. Intelligent algorithm of warship’s vital parts detection, trajectory prediction and pose estimation[J/OL] Journal of Beijing University of Aeronautics and Astronautics: 1-18[2022-08-31]. DOI:10.13700/j.bh.1001-5965.2021.0253. [7] 赵微, 惠斌, 张玉晓. 红外舰船目标的要害点检测算法[J]. 红外与激光工程. 2014, 43(1): 48-52.ZHAO W, HUI B, ZHANG Y X. Detection algorithms of aim points of IR warship images[J]. Infrared and Laser Engineering. 2014, 43(1): 48-52. [8] GIRSHICK R. Fast R-CNN[C]//2015 IEEE International Conference on Computer Vision (ICCV), Santiago, Chile: IEEE, 2015: 1440-1448. [9] REN S, HE K, GIRSHICK R, et al. Faster r-cnn: towards real-time object detection with region proposal networks[J]. Advances in Neural Information Processing Systems,2015,28:91-99. [10] HE K, GKIOXARI G, DOLL A R P, et al. Mask r-cnn[C]//Proceedings of the IEEE International Conference on Computer Vision, Venice, Italy: IEEE, 2017: 2961-2969. [11] LIU W, ANGUELOV D, ERHAN D, et al. SSD: single shot multibox detector[C]// ECCV 2016: Computer Vision – ECCV 2016. Amsterdam, The Netherlands: Springer C, 2016: 21-3 7. [12] REDMON J, FARHADI A. YOLO9000: Better, Faster, Stronger[J]. arXiv preprint arXiv,2016:1612.0824v1. [13] LIN T Y, GOYAL P, GIRSHICK R, et al. Focal loss for dense object detection[C]//Proceeding of the IEEE International Conference on Computer Vision. Piscataway: IEEE, 2017: 2980-2988. [14] LIU Z, HU J, WENG L, et al. Rotated region based CNN for ship detection[C] //2017 IEEE International Conference on Image Processing (ICIP), Beijing, China: IEEE, 2017: 900-904. [15] DING J, XUE N, LONG Y, et al. Learning RoI transformer for oriented object detection in aerial images[C]//2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Long Beach, CA, USA: IEEE, 2019: 2844-2853. [16] DANG X, LIU Q, YAN J, et al. R3det: refined single-stage detector with feature refinement for rotating object[J]. arXiv preprint arXiv, 2019: 1908.05612. 文献类型不明, 标注不规范 [17] 韩子硕, 王春平, 付强, 等. 基于超密集特征金字塔网络的SAR图像舰船检测[J]. 系统工程与电子技术. 2020, 42(10): 2214-2222.HAN Z S, WANG C P, FU Q, et al. Ship detection in SAR images based on super dense feature pyramid networks[J]. Systems Engineering and Electronics. 2020, 42(10): 2214-2222. [18] WOO S, PARK J, LEE J, et al. Cbam: convolutional block attention module[C]//ECCV 2018: Computer Vision – ECCV 2018, Munich, Germany: Springer C, 2018: 3-19. [19] HE K, ZHANG X, REN S, et al. Deep residual learning for image recognition[C]//2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA: IEEE, 2016: 770-778. [20] ZEILER M D, TAYLOR G W, FERGUS R. Adaptive deconvolutional networks for mid and high level feature learning[C]//2011 International Conference on Computer Vision. Barcelona, Spain: IEEE, 2011: 2018-2025. [21] LIU Z, YUAN L, WENG L, et al. A high resolution optical satellite image dataset for ship recognition and some new baselines[C]//International conference on pattern recognition applications and methods, Porto, Portugal : SCITEPRESS, 2017, 2: 324-331. 缺出版地 [22] LI K, WAN G, CHENG G, et al. Object detection in optical remote sensing images: a survey and a new benchmark[J]. ISPRS Journal of Photogrammetry and Remote Sensing,2020,159:296-307. doi: 10.1016/j.isprsjprs.2019.11.023 [23] XIA G, BAI X, DING J, et al. DOTA: a large-scale dataset for object detection in aerial images[C]//2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA: IEEE, 2018: 3974-3983. [24] DENG J, DONG W, SOCHER R, et al. ImageNet: a large-scale hierarchical image database[C]//2009 IEEE Conference on Computer Vision and Pattern Recognition, Miami, FL, USA: IEEE, 2009: 248-255. [25] HAN J, DING J, XUE N, et al. ReDet: A rotation-equivariant detector for aerial object detection[C]//2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Nashville, TN, USA: IEEE, 2021: 2785-2794. [26] ZHANG H, CHANG H, MA B, et al. Dynamic R-CNN: towards high quality object detection via dynamic training[C]//ECCV 2020: Computer Vision – ECCV 2020, Glasgow, UK: Springer C, 2020: 260-275. [27] XIE X, CHENG G, WANG J, et al. Oriented R-CNN for object detection[C]//2021 IEEE/CVF International Conference on Computer Vision (ICCV), Montreal, QC, Canada: IEEE, 2021: 3500-3509. [28] REDMON J, FARHADI A. Yolov3: an incremental improvement[J]. arXiv preprint arXiv, 2018: 1804.02767. 文献类型不明, 标注不规范 [29] GUO Z, LIU C, ZHANG X, et al. Beyond bounding-box: convex-hull feature adaptation for oriented and densely packed object detection[C]//2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Nashville, TN, USA: IEEE, 2021: 8788-8797. -