Optimization design of thermal condition of Rowland circle spectrometer based on optical, thermal and structural simulations
-
摘要: 针对目前紫外光谱仪热工况优化研究缺乏的问题,该文设计出一款探测范围为200 nm~450 nm、全波段分辨率不低于0.2 nm的罗兰圆光谱仪,并耦合光、热、结构模拟对其光室热工况开展优化研究。热仿真结果表明:在无加热、无入口风速下光谱仪底座温度、温差随时间不断增加,难以达到热平衡;优化光室入口风速,发现当入口风速为0.8 m/s时,整体温度降至36.103 ℃~39.859 ℃;基于光学器件间的热变形量的计算,光学器件截距总热变形量为0.203 mm;优化加热方式,发现顶层式加热方式最佳,整体温度降至34.241 ℃~36.139 ℃,光学器件截距总热变形量降至0.122 mm。对此进行光学仿真,结果表明,优化工况后的罗兰圆光谱仪工作热变形后可清晰分辨出两束波长相差0.2 nm的光束。Abstract: Aiming at the problem of lack of research on optimizing thermal condition of ultraviolet spectrometers, a Rowland circle spectrometer with a detection range of 200 nm~450 nm and a full-band resolution of no less than 0.2 nm was designed, and optimized the thermal conditions of its optical chamber by coupling optical, thermal and structural simulations. The thermal simulation results showed that the temperature and temperature difference of the spectrometer base was increased with time in the absence of heating and inlet wind speed, and it was difficult to achieve thermal balance. The inlet wind speed of optical chamber was optimized, and it was found that when that was 0.8 m/s, the overall temperature was dropped to 36.103 ℃~39.859 ℃. Based on the calculation of thermal deformation between optical devices, the intercept of total thermal deformation of several optical devices was 0.203 mm. After refining the heating method, the top-layer heating was found to be the best way, the overall temperature was dropped to 34.241 ℃~36.139 ℃, and the intercept of total thermal deformation was reduced to 0.122 mm. The optical simulation results show that the optimized Rowland circle spectrometer can still clearly distinguish the two beams with a wavelength difference of 0.2 nm after thermal deformation.
-
表 1 罗兰圆光学结构总体光学参数指标
Table 1 Overall optical parameters of optical structure of Rowland circle
光学元件 光学参数 数值 凹面衍射光栅 曲率半径R/ mm 398.83 光栅常数k/ mm 0.0004167 衍射角β/(°) 9.37~−25.93 入射狭缝 到衍射光栅距离f1/mm 305.52 狭缝宽度d/µm 30 入射角α/(°) 40 准直透镜 焦距f/mm 97.1 表 2 光谱仪各部分材料及热物性参数
Table 2 Materials and thermal properties of each part of spectrometer
部件名称 材料 密度ρ
(kg/m3)比热容cp
(kJ/kg·K)导热率λ
(W/m·K)入射狭缝 钢 7 800 0.46 48.5 光栅 铝合金 2 770 0.88 237 探测装置 铝合金 2 770 0.88 237 罗兰圆底座 钢 7 800 0.46 48.5 -
[1] 周树道, 马忠良, 王敏. Zemax在透射仪测量光路准直系统设计中的应用[J]. 微型机与应 用,2016,35(22):92-94.ZHOU Shudao, MA Zhongliang, WANG Min. Application of Zemax in the design of optical alignment system for measuring optical path with transmission instru-ment[J]. Microcomputers and Applications,2016,35(22):92-94. [2] 李学青, 王双保, 王林月. 基于STM32和CPLD的小型化近紫外CCD光谱仪[J]. 仪表技术与传感器,2016(2):18-20. doi: 10.3969/j.issn.1002-1841.2016.02.006LI Xueqing, WANG Shuangbao, WANG Linyue. Miniaturized near-ultraviolet CCD spectrometer based on STM32 and CPLD[J]. Instrument Technique and Sensor,2016(2):18-20. doi: 10.3969/j.issn.1002-1841.2016.02.006 [3] 王伟. 面向微型傅里叶变换光谱仪的电热式MEMS微镜关键技术研究[D]. 上海: 上海交通大学, 2017.WANG Wei. Research on key technology of electrothermal MEMS micromirror for micro Fourier transform spectrometer[D]. Shanghai: Shanghai Jiaotong Univer-sity, 2017. [4] XIA Guo, QU Bixiang, LIU Peng, et al. Astigmatism-corrected miniature czerny-turner spectrometer with freeform cylindrical lens[J]. Chinese Optics Letters,2012,10(8):27-30. [5] 黄良坤, 温泉, 温志渝, 等. 微型紫外光谱仪分析系统的研究[J]. 激光与光电子学进展,2020,57(5):272-278.HUANG Liangkun, WEN Quan, WEN Zhiyu, et al. Research on micro uv spectrometer analysis system[J]. Progress in Laser & Optoelectronics,2020,57(5):272-278. [6] 张波, 温志渝. 微型光纤光谱仪的研制及性能测试[J]. 半导体光电,2007(1):147-150. doi: 10.3969/j.issn.1001-5868.2007.01.039ZHANG Bo, WEN Zhiyu. Development and performance test of a micro fiber spectrometer[J]. Semiconductor Optoelectronics,2007(1):147-150. doi: 10.3969/j.issn.1001-5868.2007.01.039 [7] 徐挺, 吕丽军. 极紫外光谱仪光学系统的优化设计[J]. 光学学报,2010,30(9):2646-2651. doi: 10.3788/AOS20103009.2646XU Ting, LYU Lijun. Optimal design of extreme ultraviolet spectrometer optical system[J]. Acta Optica Sinica,2010,30(9):2646-2651. doi: 10.3788/AOS20103009.2646 [8] 郭晓龙. 基于面阵CCD的微型紫外光谱仪设计[D]. 杭州: 浙江大学, 2011.GUO Xiaolong. Design of micro UV spectrometer based on array CCD [D]. Hangzhou: Zhejiang University, 2011. [9] 罗海燕, 施海亮, 李志伟, 等. 温度对星载空间外差干涉型光谱仪性能的影响[J]. 光谱学与光谱分 析,2014,34(9):2578-2581.LUO Haiyan, SHI Hailiang, LI Zhiwei, et al. Effect of temperature on performance of space-borne heterodyne interferometer spectrometer[J]. Spectroscopy and Spectral Analysis,2014,34(9):2578-2581. [10] 张军强, 颜昌翔, 蔺超. 温度对星载成像光谱仪谱线漂移的影响[J]. 光学学报,2012,32(5):266-272.ZHANG Junqiang, YAN Changxiang, LIN Chao. Effect of temperature on spectral line drift of space-borne imaging spectrometer[J]. Acta Optica Sinica,2012,32(5):266-272. [11] 安岩, 刘英, 孙强, 等. 便携式拉曼光谱仪的光学系统设计与研制[J]. 光学学报,2013,33(3):307-313.AN Yan, LIU Ying, SUN Qiang, et al. Design and development of optical system for portable Raman spectrometer[J]. Acta Optica Sinica,2013,33(3):307-313. [12] 邹诚, 朱建钢, 汤浩波. 火花直读光谱仪的选型探讨[J]. 冶金自动化,2007(2):33-34. doi: 10.3969/j.issn.1000-7059.2007.02.008ZOU Cheng, ZHU Jiangang, TANG Haobo. Discussion on the selection of spark direct reading spectrometer[J]. Metallurgical Automation,2007(2):33-34. doi: 10.3969/j.issn.1000-7059.2007.02.008 [13] 陈希. CCD火花直读光谱仪光机结构设计[D]. 武汉: 华中科技大学, 2016: 8-9.CHEN Xi. Optical machine structure design of CCD spark direct reading spectrometer [D]. Wuhan: Huazhong University of Science and Technology, 2016: 8-9. [14] 梁凤薇. 多通道快速光谱测试系统及其应用[D]. 杭州: 浙江大学, 2005.LIANG Fengwei. Multi-channel fast spectrum measurement system and its application [D]. Hangzhou: Zhejiang University, 2005. [15] 吴骕. 微型Czerny-Turner光栅光谱仪的光学设计与分析[D]. 合肥: 合肥工业大学, 2018.WU Su. Optical design and analysis of micro Czerny-Turner grating spectrometer [D]. Hefei: Hefei University of Technology, 2018. [16] 杜斌, 鲁燕萍, 任含玉. 基于ANSYS的内置加热子的陶瓷加热器温度场分析[J]. 真空电子技术,2018(5):41-44.DU Bin, LU Yanping, REN Hanyu. Temperature field analysis of ceramic heater with built-in heater based on ANSYS[J]. Vacuum Electronics,2018(5):41-44. [17] 李欢, 胡亮, 孟祥福, 等. 基于ANSYS Workbench的光学探测系统热-结构仿真分析[J]. 红外技术,2020,42(12):1141-1150.LI Huan, HU Liang, MENG Xiangfu, et al. Thermal structure simulation analysis of optical detection system based on ANSYS Workbench[J]. Infrared Technology,2020,42(12):1141-1150. -