留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

热压载荷作用下气体检测光学窗口对激光传输影响

李栋 李品烨 王迪 吕妍 郭曦

李栋, 李品烨, 王迪, 吕妍, 郭曦. 热压载荷作用下气体检测光学窗口对激光传输影响[J]. 应用光学, 2023, 44(1): 195-201. doi: 10.5768/JAO202344.0107001
引用本文: 李栋, 李品烨, 王迪, 吕妍, 郭曦. 热压载荷作用下气体检测光学窗口对激光传输影响[J]. 应用光学, 2023, 44(1): 195-201. doi: 10.5768/JAO202344.0107001
LI Dong, LI Pinye, WANG Di, LYU Yan, GUO Xi. Influence of optical window for gas detection on laser transmission under thermal pressing loads[J]. Journal of Applied Optics, 2023, 44(1): 195-201. doi: 10.5768/JAO202344.0107001
Citation: LI Dong, LI Pinye, WANG Di, LYU Yan, GUO Xi. Influence of optical window for gas detection on laser transmission under thermal pressing loads[J]. Journal of Applied Optics, 2023, 44(1): 195-201. doi: 10.5768/JAO202344.0107001

热压载荷作用下气体检测光学窗口对激光传输影响

doi: 10.5768/JAO202344.0107001
基金项目: 博士后研究人员落户黑龙江科研启动资助项目(BHL-Q20101);东北石油大学优秀科研人才培育基金(SJQHB201801);提高油气采收率教育部重点实验室开放课题(NEPU-EOR-2019-14);东北石油大学优秀中青年科研创新团队项目(KYCXTD201901)
详细信息
    作者简介:

    李栋(1979 —),男,博士,教授,主要从事油气介质激光检测技术研究。E-mail:lidonglvyan@126.com

    通讯作者:

    王迪,男,博士研究生,主要从事激光检测及信号处理研究。E-mail:15776598521@163.com

  • 中图分类号: TN249

Influence of optical window for gas detection on laser transmission under thermal pressing loads

  • 摘要: 采用有限元方法研究了不同热压载荷作用下多组分气体原位激光检测系统的光学窗口变形分布情况,并根据热光效应计算得到光学窗口折射率分布。采用光线追迹法对比分析了氮气吹扫前后光学窗口折射率变化及变形对到达接收面的通光量和辐照度分布影响规律。此外,基于高温光学窗口激光透射测试平台开展了高温光学窗口对检测信号影响研究。结果表明:高温高压环境会使光学窗口折射率变化幅度增大及变形加剧,导致激光光路偏折引起透射光强损耗和探测信号条纹干涉;氮气吹扫可以有效改善激光传输条件,增加到达接收面的通光量,优化辐照分布,提高激光传输质量。
  • 图  1  多组分气体原位激光检测系统及简化物理模型

    Fig.  1  Multi-component gas in-situ laser detection system and its simplified physical model

    图  2  热压载荷作用下的光学窗口形变分布

    Fig.  2  Deformation distribution of optical window under thermal pressing loads

    图  3  不同工况下光学窗口径向折射率分布和轴向折射率分布

    Fig.  3  Radial refractive index distribution and axial refractive index distribution of optical window under different working conditions

    图  4  不同工况下接收面所形成的辐照分布

    Fig.  4  Radiation distribution formed by receiving surface under different working conditions

    图  5  吹扫后不同工况光学窗口形变分布

    Fig.  5  Deformation distribution of optical window under different working conditions after purging

    图  6  吹扫后不同工况下光学窗口径向折射率分布和轴向折射率分布

    Fig.  6  Radial refractive index distribution and axial refractive index distribution of optical window under different working conditions after purging

    图  7  吹扫后不同工况下接收面所形成的辐照分布

    Fig.  7  Radiation distribution formed on the receiving surface under different working conditions after purging

    图  8  高温光学窗口激光透射测试平台

    Fig.  8  Laser transmission test platform of high-temperature optical window

    图  9  不同温度下探测信号基线拟合

    Fig.  9  Baseline fitting of detected signals at different temperatures

    表  1  光学窗口材料属性

    Table  1  Material properties of optical window

    材料熔点/℃导热系数/W·(m·K)−1线性膨胀系数/10−6·K−1泊松比杨氏模量/GPa断裂模量/MPa
    熔融石英17131.40.550.1773.650
    下载: 导出CSV

    表  2  光学窗口梯度折射率拟合

    Table  2  Gradient refractive index fitting of optical window

    工况拟合公式
    工况1$n=4 \times 10^{-9} n^{3}-2 \times 10^{-7} n^{2}+8 \times 10^{-6} n+1.447\;4 $
    工况2$n=-8 \times 10^{-9} n^{3}-8 \times 10^{-8} n^{2}+1 \times 10^{-5} n+1.447\;8 $
    工况3$n=-1 \times 10^{-8} x^{3}+7 \times 10^{-8} n^{2}+1 \times 10^{-5} n+1.448\;2 $
    下载: 导出CSV

    表  3  吹扫后光学窗口梯度折射率拟合

    Table  3  Gradient refractive index fitting of lower optical window after purging

    工况拟合公式
    工况1$y=5 \times 10^{-9} n^{3}-4 \times 10^{-7} n^{2}+5 \times 10^{-6} n+1.447 $
    工况2$y=1 \times 10^{-8} n^{3}-7 \times 10^{-7} n^{2}+7 \times 10^{-6} n+1.447\;3 $
    工况3$y=-5 \times 10^{-9} n^{3}-9 \times 10^{-7} n^{2}+9 \times 10^{-6} n+1.447\;7 $
    下载: 导出CSV
  • [1] 李博, 杨军, 汤霞清, 等. 激光干涉测量中光学窗口受动态压力的影响分析[J]. 振动与冲击,2020,39(9):126-131. doi: 10.13465/j.cnki.jvs.2020.09.017

    LI Bo, YANG Jun, TANG Xiaqing, et al. Influence of dynamic pressure on the optical window in laser interferometry[J]. Journal of Vibration and Shock,2020,39(9):126-131. doi: 10.13465/j.cnki.jvs.2020.09.017
    [2] 徐钰蕾, 王乃祥, 许永森. 高速航空遥感器的双层光学窗口设计研究[J]. 光学学报,2015,35(1):378-386.

    XU Yulei, WANG Naixiang, XU Yongsen. Design analysis of double optical window of high speed aerial remote sensor[J]. Acta Optica Sinica,2015,35(1):378-386.
    [3] 范达, 明星, 刘昕悦, 等. 高空高速环境热光学分析及光学窗口设计[J]. 红外与激光工程,2016,45(8):202-208.

    FAN Da, MING Xing, LIU Xinyue, et al. Thermal optical analysis and design of optical window in high-altitude and high-speed environment[J]. Infrared and Laser Engineering,2016,45(8):202-208.
    [4] 张燕, 苏瑛, 许小雷, 等. 拼接式光学窗口装配关键技术研究[J]. 应用光学,2018,39(6):896-901.

    ZHANG Yan, SU Ying, XU Xiaolei, et al. Research on assembly key technologies for stitched optical window[J]. Journal of Applied Optics,2018,39(6):896-901.
    [5] 张丽琴, 费锦东. 高速飞行器成像探测气动光学效应研究[J]. 红外与激光工程,2020,49(6):228-232.

    ZHANG Liqin, FEI Jindong. Study on aero-optical effect of the imaging detection system of high speed flight vehicle[J]. Infrared and Laser Engineering,2020,49(6):228-232.
    [6] 方煜, 相里斌, 吕群波, 等. 光学窗口厚度设计及形变对相机性能影响[J]. 光学学报,2013,33(4):220-225.

    FANG Yu, XIANGLI Bin, LYU Qunbo, et al. Design of optical window thickness and influence of its deformation on multi-spectral camera's optical performance[J]. Acta Optica Sinica,2013,33(4):220-225.
    [7] ROGOZHIN M V, ROGALIN V E, KRYMSKII M I. Thermooptical processes in the window of a high-power gas laser[J]. Optics and Spectroscopy,2017,122(5):843-849. doi: 10.1134/S0030400X17050186
    [8] ZHANG Lei, LIU Ming, LI Danni, et al. Thermal optics property study and athermal design on optical window of IR aiming device reliability testing system[J]. Optik,2017,136:586-594. doi: 10.1016/j.ijleo.2017.01.037
    [9] 姬文晨, 张宇, 黄攀, 等. 温度梯度对红外光学系统成像质量的影响[J]. 激光与红外,2015,45(6):640-645. doi: 10.3969/j.issn.1001-5078.2015.06.009

    JI Wenchen, ZHANG Yu, HUANG Pan, et al. Effect of temperature gradient on imaging quality of infrared optical system[J]. Laser & Infrared,2015,45(6):640-645. doi: 10.3969/j.issn.1001-5078.2015.06.009
    [10] 吴天祺, 徐熙平, 潘越, 等. 红外长波投影镜头的光机结构设计及热光分析[J]. 长春理工大学学报(自然科学版),2018,41(4):64-67.

    WU Tianqi, XU Xiping, PAN Yue, et al. Opto-mechanical structure design and thermal optical analysis on LWIR projection lenses[J]. Journal of Changchun University of Science and Technology (Natural Science Edition),2018,41(4):64-67.
    [11] 吕妍, 王迪, 王志国, 等. 多元热流体激光检测及杂光抑制光路[J]. 中国光学,2019,12(2):310-320. doi: 10.3788/co.20191202.0310

    LYU Yan, WANG Di, WANG Zhiguo, et al. Optical path of laser detection and stray light suppression for multiple thermal fluids[J]. Chinese Optics,2019,12(2):310-320. doi: 10.3788/co.20191202.0310
    [12] 张兴德, 刘琳, 李荣刚. 机载光电设备红外窗口技术[J]. 红外与激光工程,2010,39(4):601-606. doi: 10.3969/j.issn.1007-2276.2010.04.005

    ZHANG Xingde, LIU Lin, LI Ronggang. Infrared optical window for airborne photoelectric equipments[J]. Infrared and Laser Engineering,2010,39(4):601-606. doi: 10.3969/j.issn.1007-2276.2010.04.005
    [13] 黎明, 吴清文, 余飞. 基于热光学分析的光学窗口玻璃厚度的优化[J]. 光学学报,2010,30(1):210-213. doi: 10.3788/AOS20103001.0210

    LI Ming, WU Qingwen, YU Fei. Optimization of optical window glass thickness based on the thermal optical analysis[J]. Acta Optica Sinica,2010,30(1):210-213. doi: 10.3788/AOS20103001.0210
    [14] 韩炜, 赵跃进, 胡新奇, 等. 超高声速飞行器光学窗口气动光学效应分析[J]. 光学技术,2010,36(4):622-626. doi: 10.13741/j.cnki.11-1879/o4.2010.04.013

    HAN Wei, ZHAO Yuejin, HU Xinqi, et al. Study on aero-optical effects of hypersonic vehicle's optical window[J]. Optical Technique,2010,36(4):622-626. doi: 10.13741/j.cnki.11-1879/o4.2010.04.013
    [15] PAN Hongyu, SUN Chuang, CHEN Xue, et al. Simulation of stray radiation from optical window with temperature-dependent spectral properties[J]. Applied Optics,2021,60(22):6695. doi: 10.1364/AO.430880
    [16] 刘囿辰, 马国鹭, 赵涌, 等. 组合式力热动态载荷光学窗口的光学特性研究[J]. 应用光学,2021,42(6):1122-1126. doi: 10.5768/JAO202142.0605003

    LIU Youchen, MA Guolu, ZHAO Yong, et al. Optical properties of combined dynamic thermal dynamic loading optical window[J]. Journal of Applied Optics,2021,42(6):1122-1126. doi: 10.5768/JAO202142.0605003
  • 加载中
图(10) / 表(3)
计量
  • 文章访问数:  109
  • HTML全文浏览量:  39
  • PDF下载量:  11
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-03-31
  • 修回日期:  2022-05-23
  • 网络出版日期:  2022-08-09
  • 刊出日期:  2023-01-17

目录

    /

    返回文章
    返回