留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于PDMS薄膜的等离子体光栅仿真分析

陈壮壮 王志斌 李克武 吴笑男

陈壮壮, 王志斌, 李克武, 吴笑男. 基于PDMS薄膜的等离子体光栅仿真分析[J]. 应用光学.
引用本文: 陈壮壮, 王志斌, 李克武, 吴笑男. 基于PDMS薄膜的等离子体光栅仿真分析[J]. 应用光学.
CHEN Zhuangzhuang, WANG Zhibin, LI Kewu, WU Xiaonan. Simulation analysis of plasma grating based on PDMS film[J]. Journal of Applied Optics.
Citation: CHEN Zhuangzhuang, WANG Zhibin, LI Kewu, WU Xiaonan. Simulation analysis of plasma grating based on PDMS film[J]. Journal of Applied Optics.

基于PDMS薄膜的等离子体光栅仿真分析

基金项目: 国家自然科学基金(61505179);山西省青年科学基金(201901D211234)
详细信息
    作者简介:

    陈壮壮(1997−),女,硕士研究生,主要从事光栅方面的研究。E-mail:1542312637@qq.com

    通讯作者:

    王志斌(1966−),男,硕士,教授,主要从事光电信息物理、测试计量技术及仪器、光电子技术与仪器、光学工程等方面的研究。E-mail:wangzhibin@nuc.edu.cn

  • 中图分类号: TN256

Simulation analysis of plasma grating based on PDMS film

  • 摘要: 为了实现对等离子体光栅共振波长的测量,研究光栅参数对应力的响应敏感程度,提出了一种新型的应力敏感型聚二甲基硅氧烷(PDMS)薄膜等离子体光栅。利用时域有限差分法(FDTD)原理,建立了一种周期性等离子体光栅结构仿真模型。借助周期边界条件,通过对光栅施加应力,改变等离子体光栅参数(即周期、占空比及Au膜厚度)来实现共振波长的测量,研究光栅参数对力的响应敏感程度;并将仿真结果与理论值相比较得出相对误差。结果表明,当光栅周期为0.7 μm,占空比为55%,金膜厚度为0.02 μm时,此时对力的响应最敏感;其次,将仿真所得不同周期时的共振波长与理论值相比较可知二者结果相吻合;周期为0.7 μm时,共振峰的波长为1.251 μm,理论与仿真所得相对误差都小于2%,结果较为准确。此方法在单色仪、光谱仪和传感等领域中具有重要作用。
  • 图  1  光栅耦合模型

    Fig.  1  Grating coupling model

    图  2  光栅结构示意图

    Fig.  2  Schematic diagram of grating structure

    图  3  不同周期的共振谱

    Fig.  3  Resonance spectra of different periods

    图  4  共振波长与周期的变化关系

    Fig.  4  The relationship between resonance wavelength and period

    图  5  不同金膜厚度的共振谱

    Fig.  5  Resonance spentrum of different gold film thickness

    图  6  共振波长和金膜厚度的变化关系

    Fig.  6  The relationship between resonance wavelength and gold film thickness

    图  7  不同占空比的共振谱

    Fig.  7  Resonance spentrum of different duty ratio

    图  8  共振波长和占空比的变化关系

    Fig.  8  The relationship between resonance wavelength and duty ratio

  • 张俊明, 吴肖杰, 马晓辉, 等. 基于光谱合束技术的透射光栅模拟设计[J]. 应用光学,2017,38(3):514-520.

    ZHANG Junming, WU Xiaojie, MA Xiaohui, et al. Simulation design of transmission grating based on spectral beam combining technique[J]. Journal of Applied Optics,2017,38(3):514-520.
    顾艳妮, 宣艳. 基于PDMS金属可调谐光栅的制备工艺研究[J]. 材料导报,2011,25(16):27-29, 47.

    GU Yanni, XUAN Yan. Research on preparation technology of metal tunable grating based on PDMS[J]. Materials Reports,2011,25(16):27-29, 47.
    李太平, 李晓莹, 虞益挺, 等. 一种MEMS周期可调光栅衍射特性的实验研究[J]. 光子学报,2010,39(4):618-621. doi: 10.3788/gzxb20103904.0618

    LI Taiping, LI Xiaoying, YU Yiting, et al. Experimental investigation of diffraction property for a MEMS-based pitch-tunable grating[J]. Acta Photonica Sinica,2010,39(4):618-621. doi: 10.3788/gzxb20103904.0618
    LI L Q, GAO P, SCHUERMANN K C, et al. Controllable growth and field-effect property of monolayer to multilayer microstrips of an organic semiconductor[J]. Journal of the American Chemical Society,2010,132(26):8807-8809. doi: 10.1021/ja1017267
    LI L Q, TANG Q X, LI H X, et al. An ultra closely pi-stacked organic semiconductor for high performance field-effect transistors[J]. Advanced Materials,2007,19(18):2613-2617. doi: 10.1002/adma.200700682
    LI L Q, HU W P, FUCHS H, et al. Controlling molecular packing for charge transport in organic thin films[J]. Advanced Energy Materials,2011,1(2):188-193. doi: 10.1002/aenm.201000021
    侯天斐, 赵复生, 王斌, 等. 基于PDMS的光纤端面微纳结构转移法[J]. 应用光学,2020,41(3):631-636.

    HOU Tianfei, ZHAO Fusheng, WANG Bin, et al. Micro-nano structure transfer method of fiber end face based on PDMS[J]. Journal of Applied Optics,2020,41(3):631-636.
    孟彦成. PDMS薄膜基柔性微纳结构的制备及其应用研究[D]. 安徽: 中国科学技术大学, 2019.

    MENG Yancheng. Preparation and application research of PDMS film-based flexible micro-nano structure[D]. Anhui: University of Science and Technology of China, 2019.
    BELLAN P M. Fundamentals of plasma physics[M]. Cambridge: Cambridge University Press, 2006.
    ZHOU Jianqiao, JING Ning, WANG Zhibin, et al. Side-grinding U-shaped gold sputter plastic fiber SPR sensor[J]. Journal of Applied Optics,2019,40(3):511-516. doi: 10.5768/JAO201940.0308002
    周传宏, 王磊, 聂娅, 等. 介质光栅导模共振耦合波分析[J]. 物理学报,2002,51(1):68-73. doi: 10.3321/j.issn:1000-3290.2002.01.013

    ZHOU Chuanhong, WANG Lei, NIE Ya, et al. The rigorous coupled-wave analysis of guided-mode resonance in dielectric gratings[J]. Acta Physica Sinica,2002,51(1):68-73. doi: 10.3321/j.issn:1000-3290.2002.01.013
    陈志涛, 张睿, 姜晖, 等. 局域表面等离子体共振在可视化传感中的应用进展[J]. 福建分析测试,2017,26(6):11-16. doi: 10.3969/j.issn.1009-8143.2017.06.03

    CHEN Zhitao, ZHANG Rui, JIANG Hui, et al. Application progress of local surface plasmon resonance in visual sensing[J]. Fujian Analytical Testing,2017,26(6):11-16. doi: 10.3969/j.issn.1009-8143.2017.06.03
    刘帆, 苑进社, 李海军. 透射式金属光栅耦合SPR传感器[J]. 半导体技术,2012,37(6):452-455.

    LIU Fan, YUAN Jinshe, LI Haijun. Transmissive metal grating coupled SPR sensor[J]. Semiconductor Technology,2012,37(6):452-455.
    HASMAN E, BOMZON Z, NIV A, et al. Polarization beam-splitters and optical switches based on space-variant computer-generated subwavelength quasi-periodic structures[J]. Optics Communications,2002,209(1-3):45-54. doi: 10.1016/S0030-4018(02)01598-5
    杨江涛, 唐军, 王玉波, 等. 用于应力测量的可调谐光栅[J]. 光学精密工程,2018,26(7):1596-1603. doi: 10.3788/OPE.20182607.1596

    YANG Jiangtao, TANG Jun, WANG Yubo, et al. Tunable grating for stress measurement[J]. Optical Precision Engineering,2018,26(7):1596-1603. doi: 10.3788/OPE.20182607.1596
    高敬敬, 陈永利, 黄倩, 等. 基于FDTD的光栅结构模型设计[J]. 包装工程,2015,36(7):113-115.

    GAO Jingjing, CHEN Yongli, HUANG Qian, et al. Design of grating structure model based on FDTD[J]. Packaging Engineering,2015,36(7):113-115.
    崔敏. 基于PDMS的光栅制备工艺研究[D]. 山西: 中北大学, 2013.

    CUI Min. Research on preparation technology of grating based on PDMS[D]. Shanxi: North University of China, 2013.
    胡来平, 刘占军. FDTD方法中的吸收边界条件[J]. 现代电子技术,2003(9):30-32. doi: 10.3969/j.issn.1004-373X.2003.09.011

    HU Laiping, LIU Zhanjun. Absorption boundary conditions in FDTD method[J]. Modern Electronic Technology,2003(9):30-32. doi: 10.3969/j.issn.1004-373X.2003.09.011
    RAMADAN O. Unsplit-field PML algorithm for truncating nonlinear FDTD domains[J]. International Journal of Infrared and Millimeter Waves,2005,26(8):1151-1161. doi: 10.1007/s10762-005-7274-5
    YU Z Y. A simple and effective method for the reflection coefficient extraction in rectangular waveguide discontinuity analysis by the FDTD[J]. Microwave and Optical Technology Letters,1997,15(1):57-59. doi: 10.1002/(SICI)1098-2760(199705)15:1<57::AID-MOP18>3.0.CO;2-5
    韩林轩. FDTD-Solutions对钙钛矿太阳能电池的光学性能研究[D]. 江苏: 南京航空航天大学, 2018.

    HAN Linxuan. Research on optical performance of perovskite solar cells by FDTD-Solutions[D]. Jiangsu: Nanjing University of Aeronautics and Astronautics, 2018.
  • 加载中
图(8)
计量
  • 文章访问数:  839
  • HTML全文浏览量:  648
  • PDF下载量:  21
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-07-08
  • 修回日期:  2020-09-25

目录

    /

    返回文章
    返回