Simulation analysis of plasma grating based on PDMS film
-
摘要: 为了实现对等离子体光栅共振波长的测量,研究光栅参数对应力的响应敏感程度,提出了一种新型的应力敏感型聚二甲基硅氧烷(PDMS)薄膜等离子体光栅。利用时域有限差分法(FDTD)原理,建立了一种周期性等离子体光栅结构仿真模型。借助周期边界条件,通过对光栅施加应力,改变等离子体光栅参数(即周期、占空比及Au膜厚度)来实现共振波长的测量,研究光栅参数对力的响应敏感程度;并将仿真结果与理论值相比较得出相对误差。结果表明,当光栅周期为0.7 μm,占空比为55%,金膜厚度为0.02 μm时,此时对力的响应最敏感;其次,将仿真所得不同周期时的共振波长与理论值相比较可知二者结果相吻合;周期为0.7 μm时,共振峰的波长为1.251 μm,理论与仿真所得相对误差都小于2%,结果较为准确。此方法在单色仪、光谱仪和传感等领域中具有重要作用。Abstract: In order to measure the resonance wavelength of plasma grating, the sensitivity of grating parameters to stress is studied, a new type of stress-sensitive polydimethylsiloxane (PDMS) thin film plasma grating is proposed. Based on the principle of finite difference time domain (FDTD), a simulation model of periodic plasma grating structure is established. With the help of periodic boundary conditions, by applying stress to the grating and changing the parameters of the plasma grating (i.e. period, duty cycle and Au film thickness) to achieve the measurement of the resonance wavelength, the sensitivity of the grating parameters to the force is studied; and compare the simulation result with the theoretical value to get the relative error. The relative error is calculated by comparing the simulation result with the theoretical value. The results show that when the grating period is 0.7 μm, the duty cycle is 55%, and the gold film thickness is 0.02 μm, the response to force is most sensitive at this time; Secondly, comparing the resonance peak wavelength at different periods obtained by simulation with the theoretical calculation value, the results of the two are consistent; When the period is 0.7 μm, the wavelength of the resonance peak is 1.251 μm, and the relative error obtained by theory and simulation is less than 2%, and the result is more accurate. This method plays an important role in the fields of monochromator, spectrometer and sensor.
-
《等离子体光学加工关键技术研究现状》是关于等离子体加工技术的综述文章。等离子体加工技术,是近年来发展起来的先进光学制造技术,具有快速缓解或去除传统光学加工方法导致的表面/亚表面损伤,以及高效、高精度和高分辨率修整光学面形的优势。该文对包括作者所在单位在内的国内外各研究机构在等离子体加工技术涉及的射流特性、界面物化反应、损伤去除机理、去除函数、加工热效应和工艺定位等关键技术研究内容及成果进行了分析,对等离子体的新型光学加工技术进行了介绍。该文条理清晰,收集资料全面,引文文献新颖,对于从事等离子光学加工或其他光学加工工艺技术人员有较大参考价值。
《快速周扫探测系统扫描平台的高精度稳定控制》对扫描平台的高精度稳定控制用于快速周扫探测系统设计与实现进行了研究,指出了扫描平台的控制是系统清晰稳定成像的关键。围绕提高扫描平台的控制精度、抗干扰性以及稳定性等问题展开研究;建立了双向惯性稳定平台数学模型;控制算法上采用了分数阶PID控制器,提出了扫描平台的控制策略,并对控制性能进行了分析与验证。仿真和硬件实验数据均表明,分数阶PID在控制精度和抗扰动能力方面相比传统PID具有明显的优势,具有重要的理论意义和应用价值。
《基于光的反射与折射定律的表述方法推导及应用》介绍推导了光的反射定律和折射定律的矢量、矩阵及四元数3种表述方法,通过Matlab辅助下的计算分析,实现了矢量、矩阵和四元数表述方法在施密特棱镜检验光路的应用,取得了较好的结果,具有一定的借鉴价值。
《基于深度学习的气溶胶荧光光谱识别应用研究》采用激光诱导荧光技术原理,以单光子探测器为核心器件,设计并搭建了一种高效的荧光光谱仪,对于该光谱仪采集的数据,探索了以一维向量和二维矩阵两种输入形式来实现荧光光谱的识别与分类,并研究对比了主成分分析网络、卷积神经网络和全卷积网络等深度学习网络的识别与分类效果。用于空气中高危病原微生物的识别与分类(识别准确率98.05%。),实现对微生物浓度的精准预测(准确率98.97%)。该研究技术先进,具有学术和工程应用价值,对于环境安全具有重要意义。
《大量程激光位移传感器的成像系统设计》为了解决目前国内自主研发的激光位移传感器基准工作距离短和测量范围小的问题,设计了一种适用于远距离测量的大量程激光位移传感器成像光学系统,完成了系统的优化设计和性能分析,重点分析了成像光学系统对测距精度的影响,所得到的的设计方法,对于相关领域设计人员具有一定的参考价值。
《基于自由曲面设计的全景鱼眼光学系统》介绍了一种基于自由曲面设计的全景鱼眼光学系统,为鱼眼光学镜头提供了新的设计思路,提出了xy焦距不同的设计方法,以达到更高的像素利用率。论文参考了非球面加工类和模造玻璃镜片现状等相关文章,在设计时应已经进行了加工性的考虑,应用意义较大。
《面向边缘智能光学感知的航空紧固件旋转检测》提出一种面向边缘智能光学感知的航空紧固件检测方法。该方法将轻量化的旋转检测方法应用到航空紧固件的检测任务中。基于强化语义和优化空间的特征融合机制提升模型的检测性能,将水平检测改进为旋转检测,显著提升检测精度,并且便于紧固件的自动抓取分拣工作。实验结果表明,与传统方法相比,该方法具有更高的检测精度和更少的参数量。
-
[1] 张俊明, 吴肖杰, 马晓辉, 等. 基于光谱合束技术的透射光栅模拟设计[J]. 应用光学,2017,38(3):514-520. ZHANG Junming, WU Xiaojie, MA Xiaohui, et al. Simulation design of transmission grating based on spectral beam combining technique[J]. Journal of Applied Optics,2017,38(3):514-520.
[2] 顾艳妮, 宣艳. 基于PDMS金属可调谐光栅的制备工艺研究[J]. 材料导报,2011,25(16):27-29, 47. GU Yanni, XUAN Yan. Research on preparation technology of metal tunable grating based on PDMS[J]. Materials Reports,2011,25(16):27-29, 47.
[3] 李太平, 李晓莹, 虞益挺, 等. 一种MEMS周期可调光栅衍射特性的实验研究[J]. 光子学报,2010,39(4):618-621. doi: 10.3788/gzxb20103904.0618 LI Taiping, LI Xiaoying, YU Yiting, et al. Experimental investigation of diffraction property for a MEMS-based pitch-tunable grating[J]. Acta Photonica Sinica,2010,39(4):618-621. doi: 10.3788/gzxb20103904.0618
[4] LI L Q, GAO P, SCHUERMANN K C, et al. Controllable growth and field-effect property of monolayer to multilayer microstrips of an organic semiconductor[J]. Journal of the American Chemical Society,2010,132(26):8807-8809. doi: 10.1021/ja1017267
[5] LI L Q, TANG Q X, LI H X, et al. An ultra closely pi-stacked organic semiconductor for high performance field-effect transistors[J]. Advanced Materials,2007,19(18):2613-2617. doi: 10.1002/adma.200700682
[6] LI L Q, HU W P, FUCHS H, et al. Controlling molecular packing for charge transport in organic thin films[J]. Advanced Energy Materials,2011,1(2):188-193. doi: 10.1002/aenm.201000021
[7] 侯天斐, 赵复生, 王斌, 等. 基于PDMS的光纤端面微纳结构转移法[J]. 应用光学,2020,41(3):631-636. HOU Tianfei, ZHAO Fusheng, WANG Bin, et al. Micro-nano structure transfer method of fiber end face based on PDMS[J]. Journal of Applied Optics,2020,41(3):631-636.
[8] 孟彦成. PDMS薄膜基柔性微纳结构的制备及其应用研究[D]. 安徽: 中国科学技术大学, 2019. MENG Yancheng. Preparation and application research of PDMS film-based flexible micro-nano structure[D]. Anhui: University of Science and Technology of China, 2019.
[9] BELLAN P M. Fundamentals of plasma physics[M]. Cambridge: Cambridge University Press, 2006.
[10] ZHOU Jianqiao, JING Ning, WANG Zhibin, et al. Side-grinding U-shaped gold sputter plastic fiber SPR sensor[J]. Journal of Applied Optics,2019,40(3):511-516. doi: 10.5768/JAO201940.0308002
[11] 周传宏, 王磊, 聂娅, 等. 介质光栅导模共振耦合波分析[J]. 物理学报,2002,51(1):68-73. doi: 10.3321/j.issn:1000-3290.2002.01.013 ZHOU Chuanhong, WANG Lei, NIE Ya, et al. The rigorous coupled-wave analysis of guided-mode resonance in dielectric gratings[J]. Acta Physica Sinica,2002,51(1):68-73. doi: 10.3321/j.issn:1000-3290.2002.01.013
[12] 陈志涛, 张睿, 姜晖, 等. 局域表面等离子体共振在可视化传感中的应用进展[J]. 福建分析测试,2017,26(6):11-16. doi: 10.3969/j.issn.1009-8143.2017.06.03 CHEN Zhitao, ZHANG Rui, JIANG Hui, et al. Application progress of local surface plasmon resonance in visual sensing[J]. Fujian Analytical Testing,2017,26(6):11-16. doi: 10.3969/j.issn.1009-8143.2017.06.03
[13] 刘帆, 苑进社, 李海军. 透射式金属光栅耦合SPR传感器[J]. 半导体技术,2012,37(6):452-455. LIU Fan, YUAN Jinshe, LI Haijun. Transmissive metal grating coupled SPR sensor[J]. Semiconductor Technology,2012,37(6):452-455.
[14] HASMAN E, BOMZON Z, NIV A, et al. Polarization beam-splitters and optical switches based on space-variant computer-generated subwavelength quasi-periodic structures[J]. Optics Communications,2002,209(1-3):45-54. doi: 10.1016/S0030-4018(02)01598-5
[15] 杨江涛, 唐军, 王玉波, 等. 用于应力测量的可调谐光栅[J]. 光学精密工程,2018,26(7):1596-1603. doi: 10.3788/OPE.20182607.1596 YANG Jiangtao, TANG Jun, WANG Yubo, et al. Tunable grating for stress measurement[J]. Optical Precision Engineering,2018,26(7):1596-1603. doi: 10.3788/OPE.20182607.1596
[16] 高敬敬, 陈永利, 黄倩, 等. 基于FDTD的光栅结构模型设计[J]. 包装工程,2015,36(7):113-115. GAO Jingjing, CHEN Yongli, HUANG Qian, et al. Design of grating structure model based on FDTD[J]. Packaging Engineering,2015,36(7):113-115.
[17] 崔敏. 基于PDMS的光栅制备工艺研究[D]. 山西: 中北大学, 2013. CUI Min. Research on preparation technology of grating based on PDMS[D]. Shanxi: North University of China, 2013.
[18] 胡来平, 刘占军. FDTD方法中的吸收边界条件[J]. 现代电子技术,2003(9):30-32. doi: 10.3969/j.issn.1004-373X.2003.09.011 HU Laiping, LIU Zhanjun. Absorption boundary conditions in FDTD method[J]. Modern Electronic Technology,2003(9):30-32. doi: 10.3969/j.issn.1004-373X.2003.09.011
[19] RAMADAN O. Unsplit-field PML algorithm for truncating nonlinear FDTD domains[J]. International Journal of Infrared and Millimeter Waves,2005,26(8):1151-1161. doi: 10.1007/s10762-005-7274-5
[20] YU Z Y. A simple and effective method for the reflection coefficient extraction in rectangular waveguide discontinuity analysis by the FDTD[J]. Microwave and Optical Technology Letters,1997,15(1):57-59. doi: 10.1002/(SICI)1098-2760(199705)15:1<57::AID-MOP18>3.0.CO;2-5
[21] 韩林轩. FDTD-Solutions对钙钛矿太阳能电池的光学性能研究[D]. 江苏: 南京航空航天大学, 2018. HAN Linxuan. Research on optical performance of perovskite solar cells by FDTD-Solutions[D]. Jiangsu: Nanjing University of Aeronautics and Astronautics, 2018.