留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

螺旋形塑料光纤表面等离子体共振折射率传感器

徐跃 薛鹏 张瑞 陈媛媛

徐跃, 薛鹏, 张瑞, 陈媛媛. 螺旋形塑料光纤表面等离子体共振折射率传感器[J]. 应用光学, 2023, 44(1): 226-233. doi: 10.5768/JAO202344.0108002
引用本文: 徐跃, 薛鹏, 张瑞, 陈媛媛. 螺旋形塑料光纤表面等离子体共振折射率传感器[J]. 应用光学, 2023, 44(1): 226-233. doi: 10.5768/JAO202344.0108002
XU Yue, XUE Peng, ZHANG Rui, CHEN Yuanyuan. Plasmon resonance refractive index sensor of spiral-shaped plastic optical fiber surface[J]. Journal of Applied Optics, 2023, 44(1): 226-233. doi: 10.5768/JAO202344.0108002
Citation: XU Yue, XUE Peng, ZHANG Rui, CHEN Yuanyuan. Plasmon resonance refractive index sensor of spiral-shaped plastic optical fiber surface[J]. Journal of Applied Optics, 2023, 44(1): 226-233. doi: 10.5768/JAO202344.0108002

螺旋形塑料光纤表面等离子体共振折射率传感器

doi: 10.5768/JAO202344.0108002
基金项目: 山西省基础研究计划资助项目(20210302124269);国家自然科学基金(62105302);国家自然科学基金面上项目(201901D111145)
详细信息
    作者简介:

    徐跃(1998—),男,硕士研究生,主要从事光纤传感技术研究。E-mail:xu_saywill@163.com

    通讯作者:

    薛鹏(1991—),男,博士研究生,讲师,主要从事光纤传感技术研究。E-mail:xuepeng@nuc.edu.cn

  • 中图分类号: TN253; O433.4

Plasmon resonance refractive index sensor of spiral-shaped plastic optical fiber surface

  • 摘要: 研究了基于波长调制的螺旋形塑料光纤(plastic optical fiber, POF)表面等离子体共振(surface plasmon resonance, SPR)折射率传感器。采用机械热压和扭曲法将塑料光纤制备成螺旋形,在螺旋形POF上通过磁控溅射蒸镀一定厚度(约50 nm)的金属薄膜来激励SPR效应,从而形成螺旋形POF-SPR传感器。通过对螺旋形POF-SPR传感器的结构进行修饰,研究不同结构参数对折射率传感特性的影响。实验结果表明:由厚度为500 μm扁平形POF扭制、螺纹数为4的螺旋形POF-SPR传感器具有较好的线性度和折射率传感特性,在折射率为1.335~1.400范围内测得的灵敏度为1 262 nm/RIU。该传感器具有成本较低、制备简单、结构稳定等优点。
  • 图  1  螺旋形POF-SPR探头制作工艺

    Fig.  1  Manufacturing process of spiral-shaped POF-SPR probe

    图  2  不同螺纹数螺旋形POF-SPR探头照片

    Fig.  2  Photos of spiral-shaped POF-SPR probes with different number of threads

    图  3  实验装置示意图

    Fig.  3  Schematic diagram of experimental device

    图  4  透射光谱和归一化透过率曲线

    Fig.  4  Curves of transmission spectrum and normalized transmittance

    图  5  扁平形POF的厚度对传感特性的影响

    Fig.  5  Influence of thickness of flattened POF on sensing characteristics

    图  6  不同螺纹数螺旋形POF-SPR传感探头归一化透过率曲线

    Fig.  6  Normalized transmittance curves of spiral-shaped POF-SPR sensor probe with different number of threads

    图  7  螺纹数对传感特性的影响

    Fig.  7  Influence of the number of threads on sensing characteristics

    表  1  基于不同类型POF-SPR传感器的性能比较

    Table  1  Performance comparison for different types of POF-SPR sensors

    Sensor structureS/(nm/RIU)Dynamic range Ref.
    Parallel polished POF1 1741.335~1.370[21]
    D-shaped1 3251.332~1.378[22]
    U-Bent1 0401.33~1.361[23]
    Screw-shaped1 2621.335~1.400Our work
    下载: 导出CSV
  • [1] TAMANG J S, DHAR R S, BHOI A K, et al. Bio-sensing application of chalcogenide thin film in a graphene-based surface plasmon resonance (SPR) sensor[J]. Sādhanā,2021,46(3):1-10.
    [2] KUMAR S, SHARMA G, SINGH V. Sensitivity of tapered optical fiber surface plasmon resonance sensors[J]. Optical Fiber Technology,2014,20(4):333-335. doi: 10.1016/j.yofte.2014.03.004
    [3] SRIVASTAVA S K, GUPTA B D. A multitapered fiber-optic SPR sensor with enhanced sensitivity[J]. IEEE Photonics Technology Letters,2011,23(13):923-925. doi: 10.1109/LPT.2011.2146767
    [4] TSIGARIDAS G, POLYZOS D, IOANNOU A, et al. Theoretical and experimental study of refractive index sensors based on etched fiber Bragg gratings[J]. Sensors and Actuators A:Physical,2014,209:9-15. doi: 10.1016/j.sna.2014.01.007
    [5] MIAO Yinping, LIU Bo, TIAN Shuang, et al. Temperature-insensitive refractive index sensor based on tilted fiber Bragg grating[J]. Microwave and Optical Technology Letters,2009,51(2):479-483. doi: 10.1002/mop.24057
    [6] 石胜辉, 吴德操, 王鑫, 等. 氧化石墨烯包覆金纳米壳修饰长周期光栅的免疫传感器[J]. 光学学报,2020,40(18):21-30.

    SHI Shenghui, WU Decao, WANG Xin, et al. An immunosensor based on the graphene-oxide-encapsulated Au-nanoshell-coated long-period fiber grating[J]. Acta Optica Sinica,2020,40(18):21-30.
    [7] 肖功利, 张开富, 杨宏艳, 等. D型对称双芯光子晶体光纤双谐振峰折射率传感器[J]. 光学学报,2020,40(12):68-75.

    XIAO Gongli, ZHANG Kaifu, YANG Hongyan, et al. Refractive index sensor with double resonance peaks for D-type symmetric two-core photonic crystal fiber[J]. Acta Optica Sinica,2020,40(12):68-75.
    [8] 张平, 刘彬, 刘正达, 等. 基于氧化石墨烯涂层的侧抛光纤马赫-曾德尔干涉仪温湿度传感器[J]. 光学学报,2021,41(3):39-48.

    ZHANG Ping, LIU Bin, LIU Zhengda, et al. Temperature and humidity sensor based on a graphene oxide-coated side-polished fiber Mach-Zehnder interferometer[J]. Acta Optica Sinica,2021,41(3):39-48.
    [9] DOMINGUES M F, ANTUNES P, ALBERTO N, et al. Cost effective refractive index sensor based on optical fiber micro cavities produced by the catastrophic fuse effect[J]. Measurement,2016,77:265-268. doi: 10.1016/j.measurement.2015.07.031
    [10] CENNAMO N, D’AGOSTINO G, PESAVENTO M, et al. High selectivity and sensitivity sensor based on MIP and SPR in tapered plastic optical fibers for the detection of l-nicotine[J]. Sensors and Actuators B: Chemical,2014,191:529-536. doi: 10.1016/j.snb.2013.10.067
    [11] JIANG Shouzhen, LI Zhe, ZHANG Chao, et al. A novel U-bent plastic optical fibre local surface plasmon resonance sensor based on a graphene and silver nanoparticle hybrid structure[J]. Journal of Physics D: Applied Physics,2017,50(16):165105. doi: 10.1088/1361-6463/aa628c
    [12] DEL CARMEN ALONSO-MURIAS M, VELÁZQUEZ-GONZÁLEZ J S, MONZÓN-HERNÁNDEZ D. SPR fiber tip sensor for the simultaneous measurement of refractive index, temperature, and level of a liquid[J]. Journal of Lightwave Technology,2019,37(18):4808-4814.
    [13] TENG Chuanxin, ZHENG Jie, LIANG Qiuyu, et al. The influence of structural parameters on the surface plasmon resonance sensor based on a side-polished macrobending plastic optical fiber[J]. IEEE Sensors Journal,2020,20(8):4245-4250. doi: 10.1109/JSEN.2020.2963853
    [14] HU Yanjun, HOU Yulong, GHAFFAR A, et al. A narrow groove structure based plasmonic refractive index sensor[J]. IEEE Access,2020,8:97289-97295.
    [15] XUE Peng, WU Bingcheng, BAO Haiyang, et al. Screw-shaped plastic optical fibers for refractive index sensing[J]. IEEE Sensors Journal,2020,20(10):5237-5242. doi: 10.1109/JSEN.2020.2968485
    [16] 薛鹏. 塑料光纤的周期性结构修饰及其折射率传感特性研究[D]. 长春: 吉林大学, 2020.

    XUE Peng. Investigation on periodic structure modification of the plastic optical fibers and their refractive index sensing[D]. Changchun: Jilin University, 2020.
    [17] POOLE C D, TOWNSEND C D, NELSON K T. Helical-grating two-mode fiber spatial-mode coupler[J]. Journal of Lightwave Technology,1991,9(5):598-604. doi: 10.1109/50.79536
    [18] 郭铖. 波长调制式表面等离子激元共振传感器与多通道技术的研究[D]. 大连: 大连理工大学, 2018.

    GUO Cheng. Study on wavelength-modulated surface plasmon resonance sensor and multi-channel technology[D]. Dalian: Dalian University of Technology, 2018.
    [19] 郑荣升. 表面等离子体共振技术与聚合物光纤传感应用研究[D]. 合肥: 中国科学技术大学, 2009.

    ZHENG Rongsheng. Research on the sensing applications of surface plasmon resonance and polymer optical fiber[D]. Hefei: University of Science and Technology of China, 2009.
    [20] 孙思文, 尹悦鑫, 王曙敏, 等. 湿腐蚀法制备U形塑料光纤折射率传感器[J]. 吉林大学学报(信息科学版),2021,39(2):166-172. doi: 10.19292/j.cnki.jdxxp.2021.02.006

    SUN Siwen, YIN Yuexin, WANG Shumin, et al. U-shaped plastic optical fiber refractive index sensor prepared by wet etching technique[J]. Journal of Jilin University (Information Science Edition),2021,39(2):166-172. doi: 10.19292/j.cnki.jdxxp.2021.02.006
    [21] LIU Lian, ZHENG Jie, DENG Shijie, et al. Parallel polished plastic optical fiber-based SPR sensor for simultaneous measurement of RI and temperature[J]. IEEE Transactions on Instrumentation and Measurement,2021,70:1-8.
    [22] CENNAMO N, MASSAROTTI D, GALATUS R, et al. Performance comparison of two sensors based on surface plasmon resonance in a plastic optical fiber[J]. Sensors,2013,13(1):721-735. doi: 10.3390/s130100721
    [23] CHRISTOPHER C, SUBRAHMANYAM A, SAI V V R. Gold sputtered U-bent plastic optical fiber probes as SPR- and LSPR-based compact plasmonic sensors[J]. Plasmonics,2018,13(2):493-502. doi: 10.1007/s11468-017-0535-z
  • 加载中
图(12) / 表(1)
计量
  • 文章访问数:  90
  • HTML全文浏览量:  50
  • PDF下载量:  9
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-03-18
  • 修回日期:  2022-05-13
  • 网络出版日期:  2022-08-06
  • 刊出日期:  2023-01-17

目录

    /

    返回文章
    返回