Design of multispectral optical window assembly for high and low temperature test device
-
摘要: 箱外光电系统综合检测仪是光电成像系统高低温性能检测装置的重要组成部分,多光谱光学窗口是高低温箱和外置目标模拟器的接口。该文根据应用需求及材料分析结果,选取多光谱ZnS作为光学窗口材料,通过热传导理论对光学窗口组件低温使用状态进行分析,重点分析窗口组件在低温条件下加热对窗口组件面型的影响,并提出了实现微应力装配的结构形式及解决窗口组件在低温条件下结霜结雾的设计方案;通过sigfit对有限元计算结果进行提取、处理以及数据拟合,并通过CODE V分析口径为Φ310 mm窗口组件在使用温度范围内的波像差rms,分析结果显示优于λ/15,均满足窗口组件的光学性能要求,最后通过实物样机进行了验证。实验结果表明:该多光谱光学窗口组件的结构设计方案既满足多波段使用要求,又满足低温除霜除雾要求,同时保证了高低温条件下的光学性能要求。Abstract: As an important accessory of the high and low temperature test device of the photoelectric imaging system, the optical window assembly is assembled on the side of the high and low temperature test box. Combined with the comprehensive detector of the photoelectric system outside the box, it is used to detect the performance index of the photoelectric imaging system under high and low temperature conditions. It is an important part of the high and low temperature performance detection device of the photoelectric imaging system. According to the application requirements and material analysis, multispectral ZnS is selected as the optical window material to meet the performance index detection requirements of multispectral photoelectric system; Through the heat conduction theory, the low-temperature service state of the optical window module is analyzed, focusing on the influence of the heating of the window module under the low-temperature condition on the surface shape of the window module, and the structural form to realize the micro stress assembly and the design scheme to solve the frost and fog of the window module under the low-temperature condition are put forward; The finite element calculation results are extracted, processed and combined by sigfit, and the caliber is analyzed by code v φ The wave aberration RMS of 310mm window module in the temperature range is better than that of λ/ 15. They all meet the optical performance requirements of window components and have been verified by the physical prototype. Therefore, the structural design scheme of the multispectral optical window assembly not only meets the requirements of multi band use, but also meets the requirements of low-temperature defrosting and defogging, and ensures the optical performance requirements under high and low temperature conditions.
-
表 1 光学窗口组件材料参数表
Table 1 material parameters of optical window assembly
序号 材料 弹性模
量/GPa泊松比 密度/
g/cm3热膨胀系数
10−6/K1 铝 68.2 0.332 2.68 23.6 2 钛 114.0 0.34 4.43 8.8 3 硫化锌 74.5 0.29 4.08 4.6 4 聚四氟乙烯 14.0 0.40 2.20 120.0 表 2 刚体位移数据表
Table 2 rigid body displacement data
SID LID T1/mm T2/mm T3/mm R1/rad R2/rad R3/rad 1 1 −1.92E-02 −7.26E-03 1.57E-01 6.20E-05 −1.47E-04 −2.64E-07 1 2 −1.37E-02 −5.18E-03 1.12E-01 4.42E-05 −1.05E-04 −1.87E-07 1 3 −8.21E-03 −3.09E-03 6.72E-02 2.65E-05 −6.30E-05 −1.09E-07 1 4 −2.74E-03 −1.01E-03 2.24E-02 8.75E-06 −2.10E-05 −3.17E-08 1 5 2.74E-03 1.08E-03 −2.24E-02 −8.99E-06 2.10E-05 4.56E-08 1 6 8.21E-03 3.16E-03 −6.72E-02 −2.67E-05 6.30E-05 1.23E-07 1 7 1.37E-02 5.25E-03 −1.12E-01 −4.45E-05 1.05E-04 2.00E-07 2 1 −2.11E-02 −8.09E-03 1.52E-01 6.43E-05 −1.53E-04 −2.49E-07 2 2 −1.51E-02 −5.77E-03 1.08E-01 4.59E-05 −1.09E-04 −1.76E-07 2 3 −9.05E-03 −3.45E-03 6.50E-02 2.75E-05 −6.55E-05 −1.03E-07 2 4 −3.02E-03 −1.13E-03 2.17E-02 9.08E-06 −2.18E-05 −2.96E-08 2 5 3.02E-03 1.20E-03 −2.17E-02 −9.33E-06 2.18E-05 4.35E-08 2 6 9.05E-03 3.52E-03 −6.50E-02 −2.77E-05 6.55E-05 1.17E-07 2 7 1.51E-02 5.84E-03 −1.08E-01 −4.61E-05 1.09E-04 1.90E-07 3 1 2.18E-02 −2.79E-02 −2.72E-01 −3.49E-04 −3.81E-04 −5.35E-06 3 2 1.56E-02 −1.99E-02 −1.94E-01 −2.50E-04 −2.72E-04 −3.82E-06 3 3 9.36E-03 −1.19E-02 −1.17E-01 −1.50E-04 −1.63E-04 −2.29E-06 3 4 3.12E-03 −3.95E-03 −3.89E-02 −4.99E-05 −5.44E-05 −7.56E-07 3 5 −3.12E-03 4.03E-03 3.89E-02 4.99E-05 5.44E-05 7.73E-07 3 6 −9.36E-03 1.20E-02 1.17E-01 1.50E-04 1.63E-04 2.30E-06 3 7 −1.56E-02 2.00E-02 1.94E-01 2.49E-04 2.72E-04 3.83E-06 4 1 1.77E-02 −2.42E-02 −2.71E-01 −3.40E-04 −3.72E-04 −5.46E-06 4 2 1.26E-02 −1.73E-02 −1.93E-01 −2.43E-04 −2.65E-04 −3.90E-06 4 3 7.58E-03 −1.04E-02 −1.16E-01 −1.46E-04 −1.59E-04 −2.34E-06 4 4 2.53E-03 −3.43E-03 −3.87E-02 −4.86E-05 −5.31E-05 −7.73E-07 4 5 −2.53E-03 3.51E-03 3.87E-02 4.86E-05 5.31E-05 7.90E-07 4 6 −7.58E-03 1.04E-02 1.16E-01 1.46E-04 1.59E-04 2.35E-06 4 7 −1.26E-02 1.74E-02 1.93E-01 2.43E-04 2.65E-04 3.92E-06 表 3 面型变化数据表
Table 3 optical surface deformation data mm
SID LID dRoC RMS P-V Max Min 1 1 1.69E+05 2.09E-02 8.66E-02 5.03E-02 −3.64E-02 1 2 2.37E+05 1.49E-02 6.19E-02 3.59E-02 −2.60E-02 1 3 3.95E+05 8.96E-03 3.71E-02 2.15E-02 −1.56E-02 1 4 1.19E+06 2.99E-03 1.24E-02 7.17E-03 −5.19E-03 1 5 −1.19E+06 2.99E-03 1.24E-02 5.20E-03 −7.19E-03 1 6 −3.95E+05 8.96E-03 3.71E-02 1.56E-02 −2.15E-02 1 7 −2.37E+05 1.49E-02 6.19E-02 2.60E-02 −3.59E-02 2 1 1.68E+05 2.11E-02 8.84E-02 5.20E-02 −3.64E-02 2 2 2.35E+05 1.51E-02 6.31E-02 3.71E-02 −2.60E-02 2 3 3.92E+05 9.04E-03 3.79E-02 2.23E-02 −1.56E-02 2 4 1.18E+06 3.01E-03 1.26E-02 7.42E-03 −5.20E-03 2 5 −1.18E+06 3.01E-03 1.26E-02 5.20E-03 −7.43E-03 2 6 −3.92E+05 9.04E-03 3.79E-02 1.56E-02 −2.23E-02 2 7 −2.35E+05 1.51E-02 6.32E-02 2.60E-02 −3.72E-02 3 1 −1.44E+06 2.20E-02 1.12E-01 6.41E-02 −4.81E-02 3 2 −2.01E+06 1.57E-02 8.01E-02 4.58E-02 −3.44E-02 3 3 −3.35E+06 9.43E-03 4.81E-02 2.75E-02 −2.06E-02 3 4 −1.01E+07 3.14E-03 1.60E-02 9.15E-03 −6.87E-03 3 5 1.00E+07 3.14E-03 1.60E-02 6.87E-03 −9.15E-03 3 6 3.35E+06 9.43E-03 4.81E-02 2.06E-02 −2.75E-02 3 7 2.01E+06 1.57E-02 8.01E-02 3.44E-02 −4.58E-02 4 1 −1.47E+06 2.22E-02 1.15E-01 6.92E-02 −4.60E-02 4 2 −2.06E+06 1.58E-02 8.23E-02 4.94E-02 −3.29E-02 4 3 −3.43E+06 9.50E-03 4.94E-02 2.96E-02 −1.97E-02 4 4 −1.03E+07 3.17E-03 1.65E-02 9.88E-03 −6.58E-03 4 5 1.03E+07 3.17E-03 1.65E-02 6.58E-03 −9.88E-03 4 6 3.43E+06 9.50E-03 4.94E-02 1.97E-02 −2.96E-02 4 7 2.06E+06 1.58E-02 8.23E-02 3.29E-02 −4.94E-02 表 4 RMS波前误差(λ=632.8 nm)
Table 4 RMS wavefront error (λ= 632.8 nm)
温度/℃ RMS波前
最小值/λRMS波前
最大值/λRMS波前
平均值/λ−50 0.037 890 0.037 890 0.0378 90 −30 0.036 957 0.036 958 0.036 957 −10 0.020 315 0.020 315 0.020 315 10 0.006 990 0.006 990 0.006 990 30 0.007 769 0.007 769 0.007 769 50 0.020 433 0.020 433 0.020 433 70 0.037 285 0.037 285 0.037 285 表 5 光学窗口组件透射波像差测试结果
Table 5 test results of transmitted wave aberration of optical window assembly
参数 1 2 3 PV/λ 0.210 0.169 0.187 RMS/λ 0.042 0.033 0.035 表 6 光学窗口组件实际工作状态透射波像差测试结果
Table 6 data table of transmitted wave aberration test results of optical window assembly in actual working state
参数 1 2 3 PV(λ) 0.220 0.212 0.233 RMS(λ) 0.056 0.062 0.065 -
[1] 皮桂英, 石庆国. 国内外空间环境模拟试验条件分析[J]. 环境技术,2013(4):41-42. doi: 10.3969/j.issn.1004-7204.2013.04.013PI Guiying, SHI Qingguo. Analysis on domestic and international space environment simulation test conditions[J]. Environmental Technology,2013(4):41-42. doi: 10.3969/j.issn.1004-7204.2013.04.013 [2] 王珊珊. 一种用于航空平台的多光谱光学窗口: CN 108240861 A[S]. 2018-07-03.WANG Shanshan. A multispectral optical window for aviation platform: CN 108240861 A[S]. 2018-07-03. [3] 惠刚阳, 杨海成, 姜峰, 等, 潜望式瞄准镜中消像旋棱镜的装调工艺技术[J]. 应用光学, 2013, 34(4): 700-705.HUI Gangyang, YANG Haicheng, JIANG Feng, et al. Alignment technology of offsetting image rotation prism in periscopic sight[J]. Journal of Applied Optics, 2013, 34(4): 700-705. [4] 黎明, 吴清文, 余飞. 基于热光学分析的光学窗口玻璃厚度的优化[J]. 光学学报,2010,30(1):210-213. doi: 10.3788/AOS20103001.0210LI Ming, WU Qingwen, YU Fei. Optimization of optical window glass thickness based on the thermal optical analysis[J]. Acta Optica Sinaica,2010,30(1):210-213. doi: 10.3788/AOS20103001.0210 [5] 李延伟, 张洪文, 詹磊, 等. 高空环境对航空遥感器光学窗口的影响[J]. 激光与红外,2012,42(9):1035-1039. doi: 10.3969/j.issn.1001-5078.2012.09.016LI Yanwei, ZHANG Hongwen, ZHAN Lei, et al. Influence of high altude environment on optical window in aerial remote sensor[J]. Laser & Infrared,2012,42(9):1035-1039. doi: 10.3969/j.issn.1001-5078.2012.09.016 [6] 赵立新. 空间相机光学窗口的热光学评价[J]. 光学学报,1988,18(10):1440-1444.ZHAO Lixin. Thermal-optical evaluation to optical windows of space camera[J]. Acta Optica Sinaica,1988,18(10):1440-1444. [7] 陈华, 史振广, 隋永新, 等. 干涉检测中环境温度引起的镜面变形分析[J]. 光学学报,2011(1):135-139.CHEN Hua, SHI Zhenguang, SUI Yongxin, et al. Thermal deformation analysis of optical surface caused by environmental temperature during intrferometric testing[J]. Acta Optica Sinaica,2011(1):135-139. [8] 廖志波, 焦文春, 伏瑞敏. 空间相机光学窗口热光学性能的仿真分析[J]. 应用光学,2011,32(5):407-410. doi: 10.3969/j.issn.1002-2082.2011.03.006LIAO Zhibo, JIAO Wenchun, FU Ruimin. Thermal optics property simulation of optical window for remote sensing[J]. Journal of Applied Optics,2011,32(5):407-410. doi: 10.3969/j.issn.1002-2082.2011.03.006 [9] 刘囿辰, 马国鹭, 赵涌, 等. 组合式热动态载荷光学窗口的光学特性研究[J]. 应用光学,2021,42(6):1122-1132. doi: 10.5768/JAO202142.0605003LIU Youchen, MA Guolu, ZHAO Yong. Optical properties of combined dynamic thermal dynamic loading optical window[J]. Journal of Applied Optics,2021,42(6):1122-1132. doi: 10.5768/JAO202142.0605003 [10] 方煜, 相里斌, 吕群波, 等. 光学窗口厚度设计及形变对相机性能影响[J]. 光学学报,2013,33(4):220-225.FANG Yu, XIANG Libin, LYU Qun. Design of optical window thickness and influence of its deformation on multi-spectral camera’s optical performance[J]. Acta optica sinica,2013,33(4):220-225. [11] PEARSON E, STEPP L. Response of large optical mirror to thermal distributions[J]. SPIE,1987,748:215-228. [12] HARNED N, HARPED R, MELUGIN R. Alignment and evaluation of the cryogenic corrected infrared astronomical satellite (IRAS)telescope[J]. Opt. Eng.,1981,20(2):202195. [13] PEPI J W, BARNES W P. Thermal distortion of a thin low ex-pansion fused silica mirror[J]. SPIE,1983,450:40-49. [14] 杨佳文, 黄巧林, 韩友民. Zernike 多项式在拟合光学表面面形中的应用及仿真[J]. 航天返回与遥感,2010,31(5):49-55. doi: 10.3969/j.issn.1009-8518.2010.05.009YANG Jiawen, HUANG Qiaolin, HAN Youmin. Application and simulation in fitting optical surface with Zernike polynomial[J]. Spacecraft Recovery Remote Sensing,2010,31(5):49-55. doi: 10.3969/j.issn.1009-8518.2010.05.009 [15] 单宝忠, 王淑岩, 牛憨笨, 等. Zernike 多项式拟合方法及应用[J]. 光学精密工程,2012,10(3):318-323.SHAN Baozhong, WANG Shuyan, NIU Hanben, et al. Zernike polynomial fitting method and its application[J]. Optics and Precision Engineering,2012,10(3):318-323. -