基于气体特征吸收谱线的太赫兹时域光谱仪频率校准

孙青, 邓玉强, 于靖, 徐涛, 陈庆俊

孙青, 邓玉强, 于靖, 徐涛, 陈庆俊. 基于气体特征吸收谱线的太赫兹时域光谱仪频率校准[J]. 应用光学, 2012, 33(3): 554-557.
引用本文: 孙青, 邓玉强, 于靖, 徐涛, 陈庆俊. 基于气体特征吸收谱线的太赫兹时域光谱仪频率校准[J]. 应用光学, 2012, 33(3): 554-557.
SUN Qing, DENG Yu-qiang, YU Jing, XU Tao, Chen Qing-jun. Frequency calibration of terahertz time-domain spectrometers using absorption lines of carbon monoxide[J]. Journal of Applied Optics, 2012, 33(3): 554-557.
Citation: SUN Qing, DENG Yu-qiang, YU Jing, XU Tao, Chen Qing-jun. Frequency calibration of terahertz time-domain spectrometers using absorption lines of carbon monoxide[J]. Journal of Applied Optics, 2012, 33(3): 554-557.

基于气体特征吸收谱线的太赫兹时域光谱仪频率校准

详细信息
    通讯作者:

    孙青(1983-),男,安徽合肥人,博士,助理研究员,主要从事太赫兹参数计量和激光参数计量等方面的研究工作。

  • 中图分类号: TN202

Frequency calibration of terahertz time-domain spectrometers using absorption lines of carbon monoxide

  • 摘要: 提出一种基于气体特征吸收谱线的太赫兹时域光谱仪(THz-TDS)的频率校准方法。通过将THz-TDS测量结果与CO在THz波段的特征吸收谱线标准数据进行比较,对THz-TDS光学延时线运动速度控制不精确造成的光谱测量线性误差进行了修正,从而实现了THz-TDS的频率校准,修正后的THz-TDS频率测量平均误差为3.1 GHz。
    Abstract: We presented a technique for frequency calibration of terahertz time-domain spectrometers (THz-TDS) using absorption lines of carbon monoxide (CO). By comparing the peak positions of absorption lines between measured results and standard data, the linearity error caused by the optical delay line was modified so as to achieve the frequency calibration. After modifying, the mean error of the peak positions measured by our THz-TDS was 3.1 GHz. The results show that CO is suitable for frequency calibration of THz-TDS.
  • [1]TONOUCHI M. Cutting-edge terahertz technology [J]. Nature Photonics, 2007,1: 97-105.

    [2]PICKWELL E, WALLACE V P. Biomedical applications of terahertz technology [J]. J. Phys. D: Appl. Phys., 2006,39(17): R301-R310.

    [3]MITTLEMAN D M, JACOBSEN R H, NEELMANI R, et al. Gas sensing using terahertz time-domain spectroscopy [J]. Appl. Phys.B,1998,67(3): 379-390..

    [4]FOLTYNOWICZ R J, ALLMAN R E. Terahertz time domain spectroscopy of atmospheric water vapor from 0.4 to 2.7 THz [R]. United States:Sandia National Laboratories,2005.[5]XIN X, ALTAN H, SAINT A, et al. Terahertz absorption spectrum of para and ortho water vapors at different humidities at room temperature [J]. J. Appl. Phys., 2006,100(9): 094905-1-4.

    [6]KLATT G, GEBS R, JANKE C, et al. Rapid-scanning terahertz precision spectrometer with more than 6 THz spectral coverage [J]. Opt. Express,2009,17(25): 22847-22854.

    [7]RACE A, JIN Y, MA X F.Terahertz optical rectification from <110> zincblende crystal [J]. Appl. Phys. Lett., 1994,64(11):1324-1326.

    [8]郎利影.基于光学整流的THz时域光谱系统的研究 [D]. 天津:天津大学,2005.

    LANG Li-ying.Study on terahertz time domain spectroscopy system by optical rectification [D]. Tianjin:Tianjin University,2005.(in Chinese)

    [9]ROTHMAN L S, JACQEMART D, BARBE A, et al. The HITRAN 2004 molecular spectroscopic database [J]. J. Quant. Spectrosc. Radiat. Transf., 2005,96(2): 139-204.

    [10]YASUI T, SANEYOSHI E. Asynchronous optical sampling terahertz time-domain spectroscopy for ultrahigh spectral resolution and rapid data acquisition [J].Appl. Phys. Lett., 2005,87(6), 061101.

    [11]KIM Y, YEE D S, YI M, et al. High-speed high-resolution terahertz spectrometers [J]. J. Korean. Phys. Soc., 2010,56(1): 255-261.
计量
  • 文章访问数:  3071
  • HTML全文浏览量:  124
  • PDF下载量:  613
  • 被引次数: 0
出版历程
  • 刊出日期:  2012-05-14

目录

    /

    返回文章
    返回