基于聚类技术的三维舰船模型特征库研究

于吉红, 白晓明, 郭宁

于吉红, 白晓明, 郭宁. 基于聚类技术的三维舰船模型特征库研究[J]. 应用光学, 2012, 33(2): 260-264.
引用本文: 于吉红, 白晓明, 郭宁. 基于聚类技术的三维舰船模型特征库研究[J]. 应用光学, 2012, 33(2): 260-264.
YU Ji-Hong, BAI Xiao-Ming, GUO Ning. Features of 3D naval vessel models using clustering technology[J]. Journal of Applied Optics, 2012, 33(2): 260-264.
Citation: YU Ji-Hong, BAI Xiao-Ming, GUO Ning. Features of 3D naval vessel models using clustering technology[J]. Journal of Applied Optics, 2012, 33(2): 260-264.

基于聚类技术的三维舰船模型特征库研究

详细信息
    通讯作者:

    于吉红(1980-),女,山东文登人,讲师,博士研究生,主要从事模式识别、图像处理的研究工作。

  • 中图分类号: TN202;TP391

Features of 3D naval vessel models using clustering technology

  • 摘要: 存贮目标所有的视点图像,建立完备的特征库,或者提取能够抵抗视点变化的不变特征,是三维目标识别的常用方法。这两种方案都存在不足:要么特征库规模庞大,识别过程计算量大,识别效率低;要么难以找到鲁棒的识别特征。结合两种方案研究了基于聚类技术建立三维舰船模型特征库的方法。利用仿射传播聚类方法无需事先指定聚类中心的优点,将其应用于两型舰船模型的视点空间聚类。通过提取视点图像的Hu矩特征,进行了仿真实验,给出了聚类结果的有效性分析。
    Abstract: Creating a sufficient feature base for all of the viewpoints or extracting an invariable feature of different viewpoints are the common methods for 3D target recognition. They share the shortcomings of big size feature base, enormous computation and low recognition rate. It is almost impossible to find the recognition feature of robustness. The method for establishing the 3D naval vessel models feature base with clustering technology was studied. The affinity propagation (AP)clustering algorithm requires no initializing cluster centers and it is suitable to cluster view points space. Experiment of AP was done using computer based on the Hu moments, and the clustering results validied the method by Silhouette index.
  • [1]席学强,王润生.遥感图像三维目标多视点建模识别方法[J].计算机辅助设计与图形学学报,2002,14(10):945-949.
    XI Xue-qiang, WANG Run-sheng. Multi-view modeling and recognition of 3D object in remote sensing images [J]. Journal of Computer Aided Design & Computer Graphics, 2002, 14(10):945-949.(in Chinese with an English abstract)
    [2]SHILANE P, MIN P, KAZHDAN N, et al. The princeton shape benchmark[C]∥Proceedings of the IEEE Shape Modeling International 2004(SMI-04). Washington DC: IEEE Computer Society, 2004:167-178.
    [3]孙洁,马惠敏,李凤亭.基于仿射不变性特征的视点空间划分[J].清华大学学报:自然科学版,2009,49(1):53-56.
    SUN Jie, MA Hui-min, LI Feng-ting. Viewpoint space partitioning based on affine invariant features [J].Journal of Tsinghua University:Science and Technology, 2009, 49(1):53-56.(in Chinese with an English abstract)
    [4]彭辉,黄士科,陶琳,等.基于zeinike矩的三维目标多视点特性视图建模[J].红外与激光工程,2005, 34(3):292-296.
    PENG Hui, HUANG Shi-ke, TAO Lin, et al. Multi-view modeling of 3-D target based on Zernike moments [J]. Infrared and Laser Engineering. 2005, 34(3):292-296.(in Chinese with an English abstract)
    [5]谢毓湘,吴玲达,张宪海,等.聚类算法在基于内容图像检索中的应用研究[J].计算机应用研究,2000(9):19-20.
    XIE Yu-Xiang, WU Ling-Da, ZHANG Xian-Hai, et al. Application research of clustering algorithm in CBIR [J]. Application Research of Computers, 2000(9):19-20.(in Chinese with an English abstract)
    [6]陈国群,付冬梅.基于灰度聚类算法的红外图像增强研究[J]. 应用光学,2007, 28(2):142-145.
    CHEN Guo-qun, FU Dong-mei. Infrared image enhancement based on gray clustering algorithm [J].Journal of Applied Optics, 2007,28(2):142-145.(in Chinese with an English abstract)
    [7]FREY B. J, DUECK D. Clustering by passing messages between data points [J]. Science, 2007, 315(5814):972-976.
    [8]HU M K. Visual pattern recognition by moment invariants [J]. IRE Transactions on Information Theory, 1962, 8(2):179-187.
    [9]YU Ji-hong, Lu Jun-wei, BAI Xiao-ming. A new real-time generation method for template based on three-dimensional model [C]∥ Proceedings of 2010. 3rd International Congress on Image and Signal Processing (CISP2010).Yantai:IEEE,2010:1755-1758.
    [10]王开军,李健,张军英,等.聚类分析中类数估计方法的实验比较[J].计算机工程,2008, 34(9):198-200.
    WANG Kai-Jun, LI Jian, ZHANG Jun-Ying et al. Experimental comparison of clusters number estimation for cluster analysis[J].Computer Engineering,2008, 34(9):198-200.(in Chinese with an English abstract)
计量
  • 文章访问数:  3121
  • HTML全文浏览量:  119
  • PDF下载量:  564
  • 被引次数: 0
出版历程
  • 刊出日期:  2012-03-14

目录

    /

    返回文章
    返回