温度不敏感的光纤布拉格高压传感技术研究

Temperature-insensitive fiber Bragg grating high-pressure sensing technology

  • 摘要: 为了实现单一光纤光栅对压强精确测量,设计了一种温度不敏感的光纤布拉格高压传感器。对该传感器的温度特性及压强响应特性进行研究。给出了该传感器的结构及封装方法。从理论上分析了该传感器的温度去敏原理,推导了该压强传感器的光纤布拉格光栅中心波长与压强的关系,得到了该传感器的压强响应灵敏度的解析表达。通过实验分析传感器的温度特性及压强响应。实验结果表明,在21℃~260.8℃的范围内,实现了温度补偿,平均波长漂移量为0.75 pm/℃,在0~44 MPa的范围内,获得了-0.054 8 nm/MPa的压强响应灵敏度,是裸光纤布拉格光栅压力响应灵敏度的18.27倍。该传感器的压强响应具有很好的线性和重复性,实验值与理论值吻合得很好,该传感器能够通过一只光纤布拉格光栅实现压强的精确测量。

     

    Abstract: In order to achieve pressure measurement by single fiber Bragg grating (FBG), a novel FBG high-pressure sensor was designed, which was insensitive to temperature. The pre-ssure and temperature responses of the sensor were researched. First, the configuration and package of the sensor were presented. Then the temperature-insensitive principle was analyzed theoretically. The relationship between the central wavelength of FBG and the pressure was deduced, and the analytical expression of pressure sensitivity is given. Finally, the temperature response and pressure response of the sensor were analyzed by experiment. Experimental results show that the temperature compensation is achieved within the temperature range of 21℃ to 260.8℃, the average wavelength shift is 0.75pm/℃, and the pressure response sensitivity of -0.054 8 nm/MPa is obtained in 0~44 MPa, which is 18.27 times higher than that of the bare FBG. The pressure response of FBG sensor has good linearity and repeatability, the experimental results agree with the theoretical one, which indicates that the sensor can achieve precise measurement of pressure by single FBG.

     

/

返回文章
返回