大口径空间反射镜高精度面形检测的支撑技术研究

彭扬林, 戴一帆, 陈善勇, 王建敏, 郑子文

彭扬林, 戴一帆, 陈善勇, 王建敏, 郑子文. 大口径空间反射镜高精度面形检测的支撑技术研究[J]. 应用光学, 2011, 32(6): 1166-1172.
引用本文: 彭扬林, 戴一帆, 陈善勇, 王建敏, 郑子文. 大口径空间反射镜高精度面形检测的支撑技术研究[J]. 应用光学, 2011, 32(6): 1166-1172.
PENG Yang-lin, DAI Yi-fan, CHEN Shan-yong, WANG Jian-min, ZHENG Zi-wen. High-precision figure testing of large-aperture space mirrors[J]. Journal of Applied Optics, 2011, 32(6): 1166-1172.
Citation: PENG Yang-lin, DAI Yi-fan, CHEN Shan-yong, WANG Jian-min, ZHENG Zi-wen. High-precision figure testing of large-aperture space mirrors[J]. Journal of Applied Optics, 2011, 32(6): 1166-1172.

大口径空间反射镜高精度面形检测的支撑技术研究

详细信息
    通讯作者:

    彭扬林(1986-),男,湖南衡阳人,硕士研究生,主要从事光学检测方面研究。

  • 中图分类号: TH74

High-precision figure testing of large-aperture space mirrors

  • 摘要: 由于空间失重状态与地面状态不同,大口径空间反射镜在地面检测时需要通过特殊支撑结构对其重力进行卸载,同时严格控制支撑力引入的反射镜变形,以满足反射镜高精度面形检测的要求。通过对一口径750 mm的空间SiC非球面反射镜进行检测,对比分析检测结果和有限元仿真结果,研究支撑结构对反射镜面形所造成的影响。主要针对吊带支撑和中心支撑进行详细的检测验证,分析其不能实现该反射镜高精度检测的原因;通过改进支撑方案,最后提出背板支撑,改善支撑变形的影响,不同角度下测量重复性达到纳米级,收到较好的检测效果,为该反射镜加工质量和加工效率的提升奠定了基础。
    Abstract: Due to different situations on the ground and in agravic space, special support structure is demanded to unload mirror gravity when testing large-aperture space mirrors on the ground. Meanwhile, deformation induced by clamping forces must be strictly controlled to meet the requirements of high-precision figure testing. This paper presents test experiments performed on a space aspheric mirror made of SiC with 750 mm aperture. Testing results are compared with the finite element analysis results to investigate the influence of the support structure on mirror surface figure. To analyze the causes of incapability of high-precision surface figure testing, the methods of strip suspension and central supporting are discussed. An improved method of backboard supporting is proposed, it reduces the supporting deformation and the repeatability of surface figure at different angles reaches nanometer level. It is proved to be able to achieve higher precision testing, which is a fundamental solution for improving machining quality and efficiency.
  • [1]WILSON R N. Reflecting telescope optics Ⅱ, manufacture, testing, alignment, modern techniques [M]. Berlin: Springer, 1999:264-268.
    [2]GONG Xue-fei, CUI Xiang-qun. Research on mirror lateral support of large astronomical telescope [J]. SPIE, 2006, 6148: Y1-Y6.
    [3]PAUL R YODER, JR. Opto-mechanical system design [M]. Florida:Taylor & Francis Group, LLC. 2006: 449-490.
    [4]SCOTT ANTONILLE, DAVID CONTENT, et al. Figure verification of a precision ultra-lightweight mirror: Techniques and results from the sharp/picture mirror at NASA/GSFC [J]. SPIE, 2008, 7011:Z1-Z15.
    [5]吴清文,卢锷,王家骐,等.自重作用下中心支撑主反射镜面形变化研究[J]. 光学精密工程,1996, 4(4): 23-28.
    WU Qing-wen, LU E, WANG Jia-qi, et al. Study on the surface figure changes of primary mirror centerally supported under gravity load [J]. Optical and Precision Engineering, 1996, 4(4): 23-28.(in Chinese with an English abstract)
    [6]MYUNG K. CHO, RONALD S. PRICE. Optimization of support point locations and force levels of the primary mirror support system [DB/OL]. Gemini Technical Report, 1993:511.http://www.gem:ni.edu/documentation/reports.html.
    [7]MYUNG K. C, RONALD S. P,  IL K. MOON. Optimization of the ATST  primary mirror support system [J]. SPIE, 2006, 6273, E1-E12.
    [8]MYUNG K C. Optimization strategy of axial and lateral supports for large primary mirrors [J]. SPIE, 1994, 2199:841-851.
    [9]LUC ARNOLD. Optimized axial support topologied for thin telescope mirrors [J]. Optical Engineering, 1995, 34(2): 567-574.
    [10]杨延生,吴清文,张洪,等.大口径反射镜支撑结构分析[J]. 光学精密工程,2001,9(增刊):29-32.
    YANG Yan-sheng, WU Qing-wen, ZHANG Hong, et al. Analysis of flexible supporting structure for heavy-caliber mirrors [J]. Optics and Precision Engineering, 2001, 9(Sup):29-32. (in Chinese with an English abstract)
计量
  • 文章访问数:  3663
  • HTML全文浏览量:  119
  • PDF下载量:  554
  • 被引次数: 0
出版历程
  • 刊出日期:  2011-11-14

目录

    /

    返回文章
    返回