激光等离子体闪光高速摄影法实验研究

周军, 冯伟利, 刘勇, 徐振华

周军, 冯伟利, 刘勇, 徐振华. 激光等离子体闪光高速摄影法实验研究[J]. 应用光学, 2011, 32(5): 1027-1031.
引用本文: 周军, 冯伟利, 刘勇, 徐振华. 激光等离子体闪光高速摄影法实验研究[J]. 应用光学, 2011, 32(5): 1027-1031.
ZHOU Jun, FENG Wei-li, LIU Yong, XU Zhen-hua. Laser-induced plasma by high speed photography[J]. Journal of Applied Optics, 2011, 32(5): 1027-1031.
Citation: ZHOU Jun, FENG Wei-li, LIU Yong, XU Zhen-hua. Laser-induced plasma by high speed photography[J]. Journal of Applied Optics, 2011, 32(5): 1027-1031.

激光等离子体闪光高速摄影法实验研究

详细信息
    通讯作者:

    周军(1984-),男,江苏盐城人,硕士,主要从事光电测试技术方面的研究工作。

  • 中图分类号: TN249

Laser-induced plasma by high speed photography

  • 摘要: 通过对激光等离子体进行诊断,可以获取激光等离子体重要的参数和演变规律。使用高速CCD对激光等离子体闪光进行拍摄,研究了不同激光能量下激光诱导空气击穿产生的等离子体的形状、大小、颜色以及激光等离子的发展变化特性。实验表明:等离子体在空间上呈发光液滴状,且逆着激光束的方向膨胀。随着激光能量的增大,等离子体在水平方向和竖直方向的尺寸逐渐增大,增大趋势逐步变小。
    Abstract: The important parameters and evolution rule of laser plasma can be obtained by diagnosing the laser plasma. Based on the photographs of plasma sparks shot by industrial high-speed CCD under different laser energy levels, the shape, size, color and variation characteristics of plasma were studied. The results showed that plasma plume looked like a liquid-droplet in space and expanded in the opposite direction of the laser beam. With the increase of laser energy, the size of plasma increased greatly in horizontal and vertical directions, and the expand rate slowed down.
  • [1]陆建, 倪晓武, 贺安之. 激光与材料相互作用物理学[M]. 北京:北京出版社, 1996.

    LU Jing, NI Xiao-wu, HE An-zhi. The interaction of laser physics and materials[M]. Beijing: Beijing Press,1996.(in Chinese)

    [2]朱士尧. 等离子体物理基础[M]. 北京: 科学出版社, 1983.

    ZHU Shi-yao.The base of the Plasma Physics[M]. Beijing: China Science Press,1983.(in Chinese)

    [3]倪晓武, 王文中, 陆建, 等. 强激光致使空气击穿过程的数值模拟[J]. 兵工学报, 1998, 19(2):134-138.

    NI Xiao-wu, WANG Wen-zhong, LU Jian, et al.The simulation of the process of laser induced plasma in air[J]. Journal of China Ordnance,1998,19(2):134-138.(in Chinese with an English abstract)

    [4]PHUOC T X. Laser-induced spark for simultaneous ignition and fuel-to-air ratio measurements[J]. Optics and Lasers in Engineering, 2006, 44: 520-534.

    [5]FERGUSON J D, ARIKAN G, DALE D S, et al. Measurements of surface diffusivity and coarsening during pulsed laser deposition[J]. Physical Review Letters, 2009, 103(25): 256103-256104.

    [6]NICHOLS W T, SASAKI T, KOSHIZAKI N. Laser ablation of a platinum target in water. II. Ablation rate and nanoparticle size distributions[J]. Journal of Applied Physics, 2006, 100(11): 114912-114916.

    [7]HARILAL S S. Influence of spot size on propagation dynamics of laser-produced tin plasma[J]. Journal of Applied Physics, 2007, 102(12): 123306-123306.

    [8]KIM K Y, ALEXEEV I, MILCHBERG H M. Measurement of ultrafast dynamics in the interaction of intense laser pulses with gases, clusters, and plasma waveguides[J]. Physics of Plasmas, 2005, 12: 56712-56711.

    [9]NAKATA Y, KAIBARA H, OKADA T, et al. Two-dimensional laser-induced fluorescence imaging of a pulsed-laser deposition process of YBa2Cu3O7-x[J]. Journal of Applied Physics, 1996, 80(4): 2458-2466.
计量
  • 文章访问数:  3454
  • HTML全文浏览量:  105
  • PDF下载量:  656
  • 被引次数: 0
出版历程
  • 刊出日期:  2011-09-14

目录

    /

    返回文章
    返回