螺旋锥束CT中两种解析重建算法的研究

王勃, 薛迎, 蔚慧甜

王勃, 薛迎, 蔚慧甜. 螺旋锥束CT中两种解析重建算法的研究[J]. 应用光学, 2011, 32(5): 894-898.
引用本文: 王勃, 薛迎, 蔚慧甜. 螺旋锥束CT中两种解析重建算法的研究[J]. 应用光学, 2011, 32(5): 894-898.
WANG Bo, XUE Ying, YU Hui-tian. Two analytical reconstruction algorithms for spiral cone-beam computerized tomography[J]. Journal of Applied Optics, 2011, 32(5): 894-898.
Citation: WANG Bo, XUE Ying, YU Hui-tian. Two analytical reconstruction algorithms for spiral cone-beam computerized tomography[J]. Journal of Applied Optics, 2011, 32(5): 894-898.

螺旋锥束CT中两种解析重建算法的研究

详细信息
    通讯作者:

    王勃(1985),山西临汾人,读硕士研究生,主要从事信号处理、图像处理和图像重建方面的研究工作。

  • 中图分类号: TN202;TP391.9

Two analytical reconstruction algorithms for spiral cone-beam computerized tomography

  • 摘要: 研究了锥束螺旋Katsevich和FDK重建算法,并对这两种算法进行比较。实验结果表明:当投影数据没有噪声的时候,FDK算法和Katsevich算法均能取得较好的效果,当对实际物体进行重建的时候,投影数据含有噪声, Katsevich算法需要对投影数据求导,而它对投影数据的噪声较敏感,重建质量有所下降。
    Abstract: The Katsevich and FDK reconstruction algorithms for cone-beam spiral scan were studied and compared. The results showed that FDK algorithm and Katsevich algorithm obtained good results when the projection data did not contain noise; however, when the Katsevich algorithm was used to compute the derivative of the projection data containing noise for the reconstruction of actual object, the reconstruction quality declined because this algorithm was sensitive to the noise of projection data.
  • [1]KATSEVICH A. Theoretically exact filtered backprojection-type inversion algorithm for spiral CT[J]. SIAM Journal on Applied Mathematics, 2002, 62: 2012-2026.

    [2]KATSEVICH A. Improved exact FBP algorithm for spiral CT[J]. Advance in Applied Mathematics,2004, 32: 681-697.

    [3]YU H Y, WANG G. Studies on implementation of the Katsevich algorithm for spiral cone-beam CT[J]. Journal of X-ray Science and Technology, 2004, 12: 97-116.

    [4]YU H Y, WANG G. Studies on artifacts of the Katsevich algorithm for spiral cone-beam CT[J]. SPIE, 2004, 5535: 540-549.

    [5]WANG G, LIN T H, CHENG P C, et al. A general cone-beam reconstruction algorithm[J]. IEEE transactions on medical imaging, 1993, 12(3):486-495.

    [6]孙怡, 侯颖, 陈欣. 锥束XCT重建算法的实现[J]. 试验技术与试验机, 2006, 3: 5-8.

    SUN Yi,HOU Ying,CHEN Xin.The implementation of XCT reconstruction algorithms[J]. Test Technology and Testing Machine,2006,3:5-8.(in Chinese with an English abstract)

    [7]李冠华,王瑜,欧宗瑛,等. GPU加速的圆弧轨迹Katsevich锥束CT重建算法[J]. 计算机辅助设计与图形学学报, 2008, 20(7): 919-924.

    LI Guan-hua,WANG Yu,OU Zong-ying,et al.GPU accelerated Katsevich cone-beam CT reconstruction algorithm for singer circular arc trajectory[J]. Journal of Computer-aided Design& Computer Graphics, 2008, 20(7): 919-924. (in Chinese with an English abstract)

    [8]张全红, 路宏年, 杨民. 锥束工业CT中Feldkamp重建算法的快速实现[J]. 计算机工程与设计, 2006, 27(6): 931-933.

    ZHANG Quan-hong,LU Hong-nian,YANG Min. Fast implementation of fieldkamp reconstruction algorithm in cone-beam industrial CT[J]. Computer Engineering and Design,  2006, 27(6): 931-933. (in Chinese with an English abstract)
计量
  • 文章访问数:  3391
  • HTML全文浏览量:  77
  • PDF下载量:  654
  • 被引次数: 0
出版历程
  • 刊出日期:  2011-09-14

目录

    /

    返回文章
    返回