基于相位相关性的傅里叶变换光谱数据的相位误差修正方法

王彩玲, 李玉山, 刘学武, 胡炳樑

王彩玲, 李玉山, 刘学武, 胡炳樑. 基于相位相关性的傅里叶变换光谱数据的相位误差修正方法[J]. 应用光学, 2011, 32(5): 878-882.
引用本文: 王彩玲, 李玉山, 刘学武, 胡炳樑. 基于相位相关性的傅里叶变换光谱数据的相位误差修正方法[J]. 应用光学, 2011, 32(5): 878-882.
WANG Cai-ling, LI Yu-shan, LIU Xue-wu, HU Bing-liang. Phase error correction in Fourier transform spectrometer based on phase correlation[J]. Journal of Applied Optics, 2011, 32(5): 878-882.
Citation: WANG Cai-ling, LI Yu-shan, LIU Xue-wu, HU Bing-liang. Phase error correction in Fourier transform spectrometer based on phase correlation[J]. Journal of Applied Optics, 2011, 32(5): 878-882.

基于相位相关性的傅里叶变换光谱数据的相位误差修正方法

详细信息
    通讯作者:

    王彩玲(1984-),女,宁夏吴中人,博士研究生,主要从事光学数据处理方面的研究。

  • 中图分类号: TN206;O436

Phase error correction in Fourier transform spectrometer based on phase correlation

  • 摘要: 相位误差的校正是傅里叶变换成像光谱仪数据处理的重要环节之一。针对干涉曲线的对称性特征,利用相位相关性计算方法,提出一种新的傅里叶变换光谱数据的相位校正的方法。将相位相关性拟合为Sinc函数,计算亚像素的偏移量,采用离散余弦变换转换到光谱域。使用标准光谱库中的源光谱数据作为原始数据,将通过离散余弦变换仿真的干涉数据与该方法得到的结果进行比较和验证,并与Mertz方法进行了对比。结果表明:该方法精度优于Mertz方法,并且计算简单。
    Abstract: Phase error correction (PEC) is an important step during hyperspectral data processing of the Fourier transform spectrometer. We present a new method for phase correction of the Fourier transform data according to the symmetry of interference curve and the calculation of phase correlation method. The phase correlation is fitted to Sinc function, the sub-pixel offset is calculated, and the interference curve is converted into spectral domain through discrete cosine transform (DCT). The interference data simulated by DCT is compared with the data by Mertz method, and the results shows that the proposed method has higher correction accuracy than Mertz and simple calculation.
  • [1]CONNES J. Computing problems in Fourier spec-troscopy[J]. Japan:Aspen Int Conf on Fourier Spectroscopy, 1970.

    [2]MERTZ L. Auxiliary computation for Fourier spectrometry [J]. Infrared Physics, 1967(7):17-23.

    [3]FORMAN ML. Correction of asymmetric interferograms obtained in Fourier Spectroscopy [J]. Journal of the Optical Society of America, 1966,56(1):59-63.

    [4]FURSTENBERG R, WHITE J O. Phase correction of interferograms using digital all-pass filters [J]. Applied Spectroscopy, 2005,59(3):316-321.

    [5]HORNER J L,GIANINO P D. Phase-only matched filtering [J]. Applied Opt.,1984,23(6):812-816.

    [6]BARTELT H, HORNER J L, Improving binary phase correlation filters using iterative techniques [J]. Appled Optics. 1985,24(18): 2894-2897.

    [7]KUGLIN C D, HINES D C, The phase correlation image alignment method [J]. Proceedings of IEEE conference on Cybernetics and Society,1975(12):163-165.

    [8]SHEKARFOROUSH H, BERTHOD M, ZERUBIA J. Sub pixel image registration by estimating the polyphase decomposition of the cross power spectrum [J]. Proceedings of IEEE Conference on Computer Vision and Pattern Recongnition, 1996(6):532-537.

    [9]HOGE W S. Subspace identification extension to the phase correlation method [J].IEEE Trans.Med.Imaging, 2003(22):277-280.

    [10]NAGASHIMA S,AOKI T, HIGUCHI T, et al. A subpixel image matching technique using phase-only correlation [J].International Symposium on Intelligent Signal Processing and Communication Systems,2006(12):701-704.

    [11]刘岳,赵永超,耿修瑞,等.傅变光谱仪数据处理中相位误差非线性的分析对Mertz相位修正方法的讨论[J].光谱学与光谱分析,2009,29(7):1809-1812.

    LIU Yue, ZHAO Yong-chao,GENG Xiu-rui,et al.Analysis of the phase error non-linearity of FTS and discussion about Mertz method[J].Spectroscopy and Spectral Analysis,2009,29(7):1809-1812.(in Chinese with an English abstract)
计量
  • 文章访问数:  3961
  • HTML全文浏览量:  131
  • PDF下载量:  827
  • 被引次数: 0
出版历程
  • 刊出日期:  2011-09-14

目录

    /

    返回文章
    返回