大粘度复合纳米材料面投影微立体光刻系统的分辨率研究

周庚侠, 班书宝, 孙天玉, 顾济华, 吴东岷

周庚侠, 班书宝, 孙天玉, 顾济华, 吴东岷. 大粘度复合纳米材料面投影微立体光刻系统的分辨率研究[J]. 应用光学, 2011, 32(5): 867-871.
引用本文: 周庚侠, 班书宝, 孙天玉, 顾济华, 吴东岷. 大粘度复合纳米材料面投影微立体光刻系统的分辨率研究[J]. 应用光学, 2011, 32(5): 867-871.
ZHOU Geng-xia, BAN Shu-bao, SUN Tian-yu, GU Ji-hua, WU Dong-min. Resolution of micro-stereo-lithography system using high viscosity nanocomposites[J]. Journal of Applied Optics, 2011, 32(5): 867-871.
Citation: ZHOU Geng-xia, BAN Shu-bao, SUN Tian-yu, GU Ji-hua, WU Dong-min. Resolution of micro-stereo-lithography system using high viscosity nanocomposites[J]. Journal of Applied Optics, 2011, 32(5): 867-871.

大粘度复合纳米材料面投影微立体光刻系统的分辨率研究

详细信息
    作者简介:

    周庚侠(1977-),女,江苏南京人,硕士研究生,主要从事面投影微立体光刻系统的研究工作。

  • 中图分类号: TN204

Resolution of micro-stereo-lithography system using high viscosity nanocomposites

  • 摘要: 基于数字微反射镜的动态掩膜面投影微立体光刻技术是一种基于快速原型制造思想的新型微细结构加工手段,其系统中常用树脂槽和涂覆装置使得其无法适用于粘度大的固化材料。为实现粘度大的复合纳米材料的固化制造,构建了新型的基于数字微反射镜技术的动态掩膜微立体光刻系统,该系统的加工横向分辨率由系统的光学分辨率与树脂特性共同决定。当单层树脂固化厚度超过临界值时,系统的横向分辨率将降低。根据实验中测量光学系统的分辨率以及树脂的工作曲线,得到本系统的最高横向分辨率可以达到14 m。
    Abstract: To fabricate microstructures using high viscosity composites, an integral stereo-lithography (SL) system adopting a digital micro-mirror device (DMD) as its dynamic mask was developed, which employed our novel resin vat and coating system. It shows that the lateral resolution of the SL system is determined by the optical resolution and the chemical response of the photo curable resin, the lateral resolution of the SL system is decreased as the curing depth goes beyond a critical value. The measured values of the optical system-s resolution and the resin-s working curve indicate that the maximum lateral resolution of the SL system is 14 m.
  • [1]HA Y M, CHOI J W, LEE S H.  Mass production of 3-D microstructures using projection microstereolithography [J]. Journal of Mechanical Science and Technology,2008, 22(2): 514-521.

    [2]陆锦洪, 谢向生, 张培晴, 等. 基于数字微镜器件亚微米制备技术研究[J]. 光子学报, 2010, 39(4): 601-604.

    LU Jin-hong, XIE Xiang-sheng, ZHAN Pei-qing, et al. Submicro-sized optical fabrication with DMD based lithography[J]. Acta Photonica Sinica, 2010, 39(4): 601-604. (in Chinese with an English abstract)

    [3]胥光申, 马训鸣, 罗声, 等. 基于数字微反射镜器件的快速成形系统[J]. 中国激光, 2010, 37(7): 1892-1897.

        XU Guang-shen, MA Xun-ming, LUO Sheng, et al. Novel stereolithography system employing digital micro-mirror device[J]. Chinese Journal of Lasers, 2010, 37(7): 1892-1897. (in Chinese with an English abstract)

    [4]于成龙, 王秀峰, 江红涛, 等. 微立体光刻技术研究及应用[J]. 激光与光电子学进展, 2006, 43(3): 15-20.

        YU Chen-long, WANG Xiu-feng, JIANG Hong-tao, et al. Development and application of microstereolithography[J]. Laser & Optoelectronics Progress, 2006, 43(3): 15-20. (in Chinese with an English abstract)

    [5]VARADAN V K,JIANG X, VARADAN V V.  Microstereolithography and other fabrication techniques for 3D MEMS [M]. New York :Chichester, 2001.

    [6]IKUTA K, KIROWATARI K. Real three dimentional micro fabrication using stereo-lithography and

    metal molding[J]. IEEE MEMS, 1993, 93: 42-47.

    [7]BERTSH A, ZISSI S. Photolithography system with liquid crystal display as active gray-tone mask for 3D structuring of photoresist [J]. Sensors and Actuators A, 2008, 144(2): 381-388.

    [8]PROVIN C, MONNERT S. Complex ceramic-polymer composite microparts made by microstereolithography [J]. Electronics Packaging Manufacturing, 2002, 25(1): 59-61.

    [9]FARASASI M, TOURNIER F C,HUANG S. A novel high-accuracy micrestereolithography method employing an adaptive electropic mask [J]. Material Processing Technology, 2000, 107(1): 167-172.

    [10]PENG Q J, GUOY K, CHEN B, et al. LCD real-time mask technique for fabrication of arbitrarily shaped microstructure [J]. SPIE, 2002,4755: 748-754.

    [11] BERTSCH A, BERNHARD P., VOGT C. Rapid prototyping of small size objects [J]. Rapid Prototyping, 2000, 6(4): 259-266.

    [12]BERTSCH A, JIGUET S,RENAUD P. Micro-fabrication of ceramic components by micro-stereolithography [J]. Micromech Microeng, 2004, 14(2): 197-203.

    [13]YANG H Y, RATCHEV S,TURITTO M. Rapid manufacturing of non-assembly complex micro-devices by micro-stereolithography [J]. Tsinghua Science and Technology,2009, 14(S1): 164-167.

    [14]KANG H Y, SEOL Y J,CHO D W. Development of an indirect solid freeform fabrication process based on microstereolithography for 3-D porous scaffolds [J]. Journal of Micromechanics and Microengineering,2009, 19(1): 1-8.

    [15]SUN C, FANG N,WU D M. Projection micro-stereolithography using digital micro-mirror dynamic mask [J]. Sensors and Actuators A, 2005, 121(1): 113-120.

    [16]WU D M, FANG N, SUN C, et al. Terahertz plasmonic high pass filter [J].Applied Physics Letters, 2003, 83(1): 201-203.

    [17]WU D M.Micro fabrication of 3D structures and characterization of molecular machine [D]. Los Angeles:Universtity of California, 2005.

    [18]JACOBS P  F. Rapid prototyping and manufacturing fundamentals of stereolithography [M]. Dearborn: Society of Manufacturing Eniginerrs Publishers, 1992.
计量
  • 文章访问数:  3970
  • HTML全文浏览量:  103
  • PDF下载量:  572
  • 被引次数: 0
出版历程
  • 刊出日期:  2011-09-14

目录

    /

    返回文章
    返回