光纤布拉格光栅非线性传输特性的数值研究

唐利, 彭拥军

唐利, 彭拥军. 光纤布拉格光栅非线性传输特性的数值研究[J]. 应用光学, 2011, 32(2): 308-316.
引用本文: 唐利, 彭拥军. 光纤布拉格光栅非线性传输特性的数值研究[J]. 应用光学, 2011, 32(2): 308-316.
TANG Li, PENG Yong-jun. Numerical simulation on nonlinear transmissive characteristicsof fiber Bragg grating[J]. Journal of Applied Optics, 2011, 32(2): 308-316.
Citation: TANG Li, PENG Yong-jun. Numerical simulation on nonlinear transmissive characteristicsof fiber Bragg grating[J]. Journal of Applied Optics, 2011, 32(2): 308-316.

光纤布拉格光栅非线性传输特性的数值研究

详细信息
    通讯作者:

    唐利(1972-),女,四川遂宁人,主要从事光学学科参考咨询、光纤通信全光信息处理器件的研究工作。

  • 中图分类号: TN253-34

Numerical simulation on nonlinear transmissive characteristicsof fiber Bragg grating

  • 摘要: 回顾了光纤布拉格光栅非线性耦合模方程的数值求解方法,分析了基于隐式龙格库塔方法的预报校正系统的特点。为实现简捷、高效、高阶精度的光纤布拉格光栅非线性耦合模方程的数值仿真,设计了基于连分式修正法的预报-校正系统并与基本方法进行了对比。采用该方法可以极大地加长光栅的分段长度以节约计算时间,同时也不存在仿真过程中因计算方法产生的不收敛现象,误差对比分析表明该方法能够准确地模拟光栅的非线性传输特性。为解决静态和动态情况下仿真方法不统一并避免数值计算引起的冲击响应,根据光栅中光波传输的物理过程建立了静态和动态情况下统一的数值仿真模型并研究了仿真中所采用的多种技术,利用这些技术能够有效地仿真连续波和脉冲输入情况下光纤布拉格光栅的非线性传输特性。
    Abstract: Numerical methods for solving a set of nonlinear coupled equations of fiber Bragg grating (FBG) were reviewed. Characteristics of prediction-correction system based on implicit Runge-Kutta method were analyzied.To achieve simple, efficient and high precision numerical simulation for nonlinear coupled mode equations of fiber Bragg grating, we designed a prediction-correction system based on continued fraction correction method, and compared it with other methods. The segment length of grating can be greatly increased to save computing time through this method ,and the convergence of calculation always exists. The comparison of errors shows that the simulation method is accurate. By this method, uniform numerical simulation model is established under static and dynamic circumstances based on physical process of optical wave transmission in grating. Many skills in simulation are researched. Nonlinear transmission characteristics of FBG were studied numerically when continuous wave (CW) and pulse were input.
  • [1]杨广强, 郭勇, 宋继恩, 等. Bragg光纤光栅非线性开关特性研究[J]. 半导体光电, 2004, 25(2): 94-97.
    YANG Guang-qiang, GUO Yong, SONG Ji-en, et al. Nonlinear switching characteristics of fiber Bragg gratings[J]. Semiconductor Optoelectronics, 2004, 25(2): 94-97. (in Chinese with an English abstract)
    [2]PEREIRA S, CHAK P, SIPE J E. Gap-soliton switching in short microresonator structures[J]. Journal of the Optical Society of America B, 2002, 19(9): 2191-2201. [3]宋慧芳, 邱昆, 武保剑, 等. 光纤Bragg光栅非线性开关动态特性研究[J]. 应用光学, 2008, 29(6): 978-983.
    SONG Hui-fang, QIU Kun, WU Bao-jian, et al. Dynamic characteristic of FBG nonlinear switch[J]. Journal of Applied Optics, 2008, 29(6): 978-983. (in Chinese with an English abstract) [4]张远程, 张颖. 光纤光栅光学双稳态器件[J]. 中国激光, 1998, 25(9): 809-812.
    ZHANG Yuan-cheng, ZHANG Ying. Optical bistability devices with fiber-optical gratings[J]. Chinese Journal of Lasers, 1998, 25(9): 809-812. (in Chinese with an English abstract)
    [5]张颖. 光纤光栅双稳态光开关和数字光信号放大[J]. 中国激光, 1998, 25(10): 887-890.
    ZHANG Ying. Optical switching and digital optical signal amplification using a fiber grating OBD[J]. Chinese Journal of Lasers, 1998, 25(10): 887-890. (in Chinese with an English abstract) [6]DE STERKE C M, EGGLETON B J, KRUG P A. High-intensity pulse propagation in uniform gratings and grating superstructures[J]. Journal of Lightwave Technology, 1997, 15(8): 1494-1502.
    [7]MAO Qing-he, FENG Su-juan, LIU Wen-qing, et al. Bistability-mapping for L-band dual-wavelength Erbium-doped fiber laser by using fiber loop mirror with polarization controller[J]. IEEE Photonics Technology Letters, 2006, 18(18): 1973-1975.
    [8]XIA L, SHUM P, YAN M, et al. Tunable and switchable fiber ring laser among four wavelengths with ultra narrow wavelength spacing using a quadrupletransmission-band fiber Bragg grating filter[J]. IEEE Photonics Technology Letters, 2006, 18(19): 2038-2040.
    [9] MOK J T, DE STERKE C M, LITTLER I C M, et al. Dispersionless slow light using gap solitons[J]. Nature Physics, 2006, 2(22): 775-780.
    [10]AGRAWAL G P. Nonlinear fiber optics & application of nonlinear fiber optics[M]. California: Academic Press, A Harcourt Science and Technology Company, 2001.
    [11]ERDOGAN T. Fiber grating spectra[J]. Journal of Lightwave Technology 1997, 15(8): 1277-1294.
    [12]李永健, 胡硕臻. 用传输矩阵法研究光纤Bragg光栅的非线性特性[J]. 科技广场, 2005(2): 16-21.
    LI Yong-jian, HU Shuo-zhen. Study of the nonlinear characteristics of fiber Bragg gratings by transfer matrix method[J]. Technology Square, 2005(2): 16-21. (in Chinese with an English abstract)
    [13]SHI Chao-xiang. Optical bistability in reflective fiber gratings[J]. IEEE Journal of Quantum Electronics, 1995, 31(11): 2037-2043.
    [14]MURIEL M A. Field distributions inside fiber gratings[J]. IEEE Journal of Quantum Electronics, 1999, 35(4): 548-558.
    [15]刘玉敏, 俞重远, 杨洪波, 等. 光纤布拉格光栅非线性特性研究[J]. 中国激光, 2006, 30(1): 101-104.
    LIU Yu-min, YU Zhong-yuan, YANG Hong-bo, et al. The investigation of the nonlinear characteristics of fiber Bragg gratings[J]. Chinese Journal of Lasers, 2006, 30(1): 101-104. (in Chinese with an English abstract)
    [16]DE STERKE C M, SIPE J E. Switching dynamics of finite periodic nonlinear media: a numerical study[J]. Physical Review A, 1990, 42(5): 2858-2869.
    [17]DE STERKE C M, JACKSON K R, ROBERT B D. Nonlinear coupled-mode equations on a finite interval: a numerical procedure[J]. Journal of the Optical Society of America B, 1991, 8(2): 403-412.
    [18]徐士良. 数值分析与算法[M]. 北京: 机械工业出版社, 2003.
    XU Shi-liang. Numerical analysis and algorithms[M]. Beijing: Machinery Industry Press, 2003. (in Chinese)
计量
  • 文章访问数:  4194
  • HTML全文浏览量:  139
  • PDF下载量:  826
  • 被引次数: 0
出版历程
  • 刊出日期:  2011-03-14

目录

    /

    返回文章
    返回