一种严格最佳(ν,k,1)光正交码的设计方法

Design solution for construction of strictlyoptimized (ν, k, 1) optical orthogonal codes

  • 摘要: 介绍了严格最佳和准最佳(ν,k,1)光正交码的定义,阐述了它们与(ν,k,1)循环差集族的关系。基于Wilson均匀分布差引理和初等数论的基本理论,提出一种最佳(ν,k,1)循环差集族的构造方法,即构造定义在ν阶有限域上满足特定约束条件的k元集合。将该方法用于光正交码的设计中,可以有效地设计一些严格最佳(ν,k,1)光正交码,其中,码长ν为素数,码重k的取值为4、5和6。最后结合具体实例,给出严格最佳(ν,k,1)光正交码的计算机辅助设计方法。同其他设计方法相比,该设计方法既简单又实用,尤其对严格最佳(ν,k,1)光正交码而言,设计效率较高;随着码重k的增加,码的设计效率逐渐降低。

     

    Abstract: The definitions of strictoptimal and quasioptimal (ν, k, 1) optical orthogonal codes are introduced. The relationship between optimal optical orthogonal code and cyclic difference family is given. Based on Wilson’s lemma on evenly distributed differences and primary number theory, a simple and practical construction method for optimal (ν, k, 1) cyclic difference family is proposed. Furthermore, this method was applied to the construction of optical orthogonal codes, and some strictoptimal (ν, k, 1) optical orthogonal codes could be constructed efficiently, in which, the code length ν was a prime number. Finally, through an example of the construction of strictoptimal (ν, k, 1) optical orthogonal codes, the computer assistant design method is given. The work can provides an effective approach for the construction of strictoptimal (ν, k, 1) optical orthogonal codes.

     

/

返回文章
返回