留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

光谱分频型PV/T系统中纳米颗粒优化分析

齐耀 刘子阳 侯宇田 于晓慧 杨宾

齐耀, 刘子阳, 侯宇田, 于晓慧, 杨宾. 光谱分频型PV/T系统中纳米颗粒优化分析[J]. 应用光学, 2023, 44(4): 699-710. doi: 10.5768/JAO202344.0401001
引用本文: 齐耀, 刘子阳, 侯宇田, 于晓慧, 杨宾. 光谱分频型PV/T系统中纳米颗粒优化分析[J]. 应用光学, 2023, 44(4): 699-710. doi: 10.5768/JAO202344.0401001
QI Yao, LIU Ziyang, HOU Yutian, YU Xiaohui, YANG Bin. Optimization analysis of nanoparticles for spectral beam splitting hybrid PV/T system[J]. Journal of Applied Optics, 2023, 44(4): 699-710. doi: 10.5768/JAO202344.0401001
Citation: QI Yao, LIU Ziyang, HOU Yutian, YU Xiaohui, YANG Bin. Optimization analysis of nanoparticles for spectral beam splitting hybrid PV/T system[J]. Journal of Applied Optics, 2023, 44(4): 699-710. doi: 10.5768/JAO202344.0401001

光谱分频型PV/T系统中纳米颗粒优化分析

doi: 10.5768/JAO202344.0401001
基金项目: 河北省自然科学基金(E2019202089);河北省青年科学基金(E2021202034);惠州市绿色能源与新材料研究所基金(KYXM-2022002)
详细信息
    作者简介:

    齐耀(1998—),男,硕士研究生,主要从事可再生能源利用与建筑节能技术研究。E-mail:qiyaoran@163.com

    通讯作者:

    杨宾(1980—),男,博士,副教授,主要从事可再生能源利用与建筑节能技术研究。E-mail:yangbin0720@hebut.edu.cn

  • 中图分类号: TN204;TB34

Optimization analysis of nanoparticles for spectral beam splitting hybrid PV/T system

  • 摘要: 将纳米流体用于光谱分频(spectral beam splitting, SBS)型PV/T系统可提高系统效率,合适粒径的纳米颗粒(nanoparticles, NPs)能有效过滤光伏电池光谱响应外的太阳辐射。采用时域有限差分法(finite difference time domain, FDTD)模拟了Au、Ag、Cu、Fe3O4、ZnO、TiO2六种NPs的光学特性,以单晶硅太阳能电池的光谱响应为例,研究了粒径为20 nm~200 nm六种NPs的光吸收性能,并将契合度作为评价指标优化粒径。结果表明:NPs的光学性质对其粒径大小非常敏感,通过改变NPs粒径,可在较宽范围内调节散射、吸收和消光峰位置,且其峰值均随粒径增大而增加。金属NPs对太阳辐射的吸收能力优于非金属NPs,6种NPs单位体积最大吸收功率分别为21.88 GW/m3、17.95 GW/m3、20.16 GW/m3、2.54 GW/m3、1.02 GW/m3、0.27 GW/m3。契合度指标分析表明,适用于SBS型PV/T系统的6种NPs的最优粒径分别为20 nm、50 nm、20 nm、170 nm、110 nm、20 nm。
  • 图  1  AM1.5标准太阳辐射

    Fig.  1  AM1.5 standard solar radiation

    图  2  模拟结果与文献[20]对比

    Fig.  2  Comparison between simulation results and published literature [20]

    图  3  三种金属NPs的散射、吸收和消光截面与波长的关系

    Fig.  3  Relationship between scattering, absorption and extinction cross sections of three metal NPs and wavelengths

    图  4  三种金属NPs的散射、吸收和消光峰值及峰值波长与粒径的变化曲线

    Fig.  4  Variation curves of scattering, absorption and extinction peaks as well as peak wavelengths of three metal NPs with particle sizes

    图  5  三种非金属NPs的散射、吸收和消光截面与波长的变化曲线

    Fig.  5  Variation curves of scattering, absorption and extinction cross sections of three nonmetallic NPs with wavelengths

    图  6  三种非金属NPs的散射、吸收和消光峰值及峰波长与粒径的变化曲线

    Fig.  6  Variation curves of scattering, absorption and extinction peaks as well as peak wavelengths of three nonmetallic NPs with particle sizes

    图  7  三种金属NPs的散射、吸收和消光功率与粒径的变化曲线

    Fig.  7  Variation curves of scattering, absorption and extinction power of three metal NPs with particle sizes

    图  8  三种非金属NPs的散射、吸收和消光功率与粒径的变化曲线

    Fig.  8  Variation curves of scattering, absorption and extinction power of three nonmetallic NPs with particle sizes

    图  9  不同NPs光吸收性能分析

    Fig.  9  Analysis of optical absorption performance of different NPs

    图  10  不同粒径、不同类型的NPs契合度分析

    Fig.  10  Degree of appropriateness analysis of NPs with different particle sizes and different types

  • [1] CHEN Y W, WONG C W Y, YANG R, et al. Optimal structure adjustment strategy, emission reduction potential and utilization efficiency of fossil energies in China[J]. Energy,2021,237(278):121623.
    [2] PRĂVĂLIE R, SIRODOEV I, RUIZ-ARIAS J, et al. Using renewable (solar) energy as a sustainable management pathway of lands highly sensitive to degradation in Romania. A countrywide analysis based on exploring the geographical and technical solar potentials[J]. Renewable Energy,2022,193:976-990. doi: 10.1016/j.renene.2022.05.059
    [3] LI G, LI M, TAYLOR R, et al. Solar energy utilisation: Current status and roll-out potential[J]. Applied Thermal Engineering,2022,209(1):118285.
    [4] LIANG H X, WANG F Q, YANG L W, et al. Progress in full spectrum solar energy utilization by spectral beam splitting hybrid PV/T system[J]. Renewable and Sustainable Energy Reviews,2021,141:110785. doi: 10.1016/j.rser.2021.110785
    [5] HERRANDO M, MARKIDES C N, HELLGARDT K. A UK-based assessment of hybrid PV and solar-thermal systems for domestic heating and power: System performance[J]. Applied Energy,2014,122(C):288-309.
    [6] WOLF M. Performance analyses of combined heating and photovoltaic power systems for residences[J]. Energy Conversion,1976,16(1/2):79-90.
    [7] ZHAO B, HU M K, AO X Z, et al. Spectrally selective approaches for passive cooling of solar cells: A review[J]. Applied Energy,2020,262(C):114548.
    [8] MAKA A O M, O'DONOVAN T S. A review of thermal load and performance characterization of a high concentrating photovoltaic (HCPV) solar receiver assembly[J]. Solar Energy,2020,206(10):35-51.
    [9] ZHAO J F, SONG Y C, LAM W H, et al. Solar radiation transfer and performance analysis of an optimum photovoltaic/thermal system[J]. Energy Conversion and Management,2011,52(2):1343-1353. doi: 10.1016/j.enconman.2010.09.032
    [10] TAYLOR R A, OTANICAR T, ROSENGARTEN G. Nanofluid-based optical filter optimization for PV/T systems[J]. Light:Science & Applications,2012,1:e34.
    [11] AN W, ZHANG J, ZHU T, et al. Investigation on a spectral splitting photovoltaic/thermal hybrid system based on polypyrrole nanofluid: Preliminary test[J]. Renewable Energy,2016,86:633-642. doi: 10.1016/j.renene.2015.08.080
    [12] CRISOSTOMO F, HJERRILD N, MESGARI S, et al. A hybrid PV/T collector using spectrally selective absorbing nanofluids[J]. Applied Energy,2017,193(C):1-14.
    [13] LIU Y F, SUN G T, WU D M, et al. Investigation on the correlation between solar absorption and the size of non-metallic nanoparticles[J]. Journal of Nanoparticle Research,2019,21(7):161. doi: 10.1007/s11051-019-4576-4
    [14] YEE K. Numerical solution of initial boundary value problems involving maxwell's equations in isotropic media[J]. IEEE Transactions on Antennas and Propagation,1966,14(3):302-307. doi: 10.1109/TAP.1966.1138693
    [15] LIU B H, YANG L J, WANG Y. Light distribution analysis of optical fibre probe–based nearfield optical tweezers using FDTD[J]. Journal of Physics: Conference Series,2009,188(1):012029.
    [16] CHEN M J, HE Y R, WANG X Z, et al. Numerically investigating the optical properties of plasmonic metallic nanoparticles for effective solar absorption and heating[J]. Solar Energy,2018,161:17-24. doi: 10.1016/j.solener.2017.12.032
    [17] 孙宝玉, 许济琛, 谷岩, 等. 振动辅助纳米压印制备大面积光栅结构[J]. 应用光学,2022,43(1):124-130. doi: 10.5768/JAO202243.0105001

    SUN Baoyu, XU Jichen, GU Yan, et al. Preparation of large-area grating structure by vibration-assisted nanoimprint[J]. Journal of Applied Optics,2022,43(1):124-130. doi: 10.5768/JAO202243.0105001
    [18] KIM J, LEE G J, PARK I, et al. Finite-difference time-domain numerical simulation study on the optical properties of silver nanocomposites[J]. Journal of Nanoscience and Nanotechnology,2012,12(7):5527-5531. doi: 10.1166/jnn.2012.6330
    [19] POLYANSKIY M. Refractive index database[EB/OL]. (2008-05-10)[2022-08-13]. https://refractiveindex.infc/
    [20] 刘梦琦, 王博翔, 赵长颖. 实现纳米流体全光谱近完美光热转换[J]. 工程热物理学报,2020,41(9):2272-2278.

    LIU Mengqi, WANG Boxiang, ZHAO Changying. Realization of nanofluids full spectrum nearly perfect solar-thermal conversion[J]. Journal of Engineering Thermophysics,2020,41(9):2272-2278.
    [21] ZHOU Y P, LI M J, HU Y H, et al. Design and experimental investigation of a novel full solar spectrum utilization system[J]. Applied Energy,2020,260(C):114258.
    [22] ZHANG C X, SHEN C, ZHANG Y B, et al. Optimization of the electricity/heat production of a PV/T system based on spectral splitting with Ag nanofluid[J]. Renewable Energy,2021,180(8):30-39.
    [23] PARIS A, VACCARI A, LESINA A C, et al. Plasmonic scattering by metal nanoparticles for solar cells[J]. Plasmonics,2012,7(3):525-534. doi: 10.1007/s11468-012-9338-4
    [24] 刘亚飞. 基于纳米流体的光伏光热系统实验研究及颗粒光学和力学性能分析[D]. 北京: 北京化工大学, 2020.

    LIU Yafei. Experimental study of photovoltaic photothermal system based on nanofluid and analysis of optical and mechanical properties of particles[D]. Beijing: Beijing University of Chemical Technology, 2020.
  • 加载中
图(15)
计量
  • 文章访问数:  138
  • HTML全文浏览量:  60
  • PDF下载量:  13
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-08-17
  • 修回日期:  2022-09-21
  • 网络出版日期:  2023-04-13
  • 刊出日期:  2023-07-15

目录

    /

    返回文章
    返回