留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

层次卷积滤波红外弱小目标检测方法

陈灿灿 夏润秋 刘洋 刘力双 陈青山

陈灿灿, 夏润秋, 刘洋, 刘力双, 陈青山. 层次卷积滤波红外弱小目标检测方法[J]. 应用光学, 2023, 44(4): 826-833. doi: 10.5768/JAO202344.0403003
引用本文: 陈灿灿, 夏润秋, 刘洋, 刘力双, 陈青山. 层次卷积滤波红外弱小目标检测方法[J]. 应用光学, 2023, 44(4): 826-833. doi: 10.5768/JAO202344.0403003
CHEN Cancan, XIA Runqiu, LIU Yang, LIU Lishuang, CHEN Qingshan. Hierarchical convolution filtering method for infrared dim small target detection[J]. Journal of Applied Optics, 2023, 44(4): 826-833. doi: 10.5768/JAO202344.0403003
Citation: CHEN Cancan, XIA Runqiu, LIU Yang, LIU Lishuang, CHEN Qingshan. Hierarchical convolution filtering method for infrared dim small target detection[J]. Journal of Applied Optics, 2023, 44(4): 826-833. doi: 10.5768/JAO202344.0403003

层次卷积滤波红外弱小目标检测方法

doi: 10.5768/JAO202344.0403003
基金项目: 国防军工重点计量科研项目(J*********1)
详细信息
    作者简介:

    陈灿灿(1995—),女,硕士,主要从事红外图像小目标检测算法研究。E-mail:chencc2580@163.com

  • 中图分类号: TN219

Hierarchical convolution filtering method for infrared dim small target detection

  • 摘要: 针对单帧复杂背景红外图像点目标检测算法存在复杂背景下处理效果不理想、处理时间长的问题,提出了一种层次卷积滤波检测算法。主要分为两个部分:第一,根据红外小目标特性,设计一种层次卷积滤波的算子,对图像进行滤波处理,实现图像中小目标的增效和背景抑制的效果;第二,采用基于最大值的自适应阈值方法,对图像进行二值化操作,过滤背景杂波,最终提取到待检测的目标。在大量不同背景红外图像中进行实验,论文算法在背景抑制因子和信噪比增益的性能量化结果上优于现有5种典型红外弱小目标检测算法的性能结果,且平均处理时间仅为高斯拉普拉斯(Laplacian of Gaussian,LoG)滤波算法的30.42%。通过实验对比,表明该层次卷积滤波算法可以有效解决在不同复杂背景下的红外图像中对小目标检测的问题。
  • 图  1  整体算法流程

    Fig.  1  Overall flow chart of algorithm

    图  2  含有小目标的红外图像

    Fig.  2  Infrared image with small targets

    图  3  算子模型介绍

    Fig.  3  Introduction of operator model

    图  4  该算子的不同应用情况

    Fig.  4  Different applications of proposed operator

    图  5  6种算法处理后的单帧图像

    Fig.  5  Single-frame images processed by six algorithms

    图  6  6种算法处理后的序列图像

    Fig.  6  Sequence images processed by six algorithms

    图  8  不同算法的ROC曲线图

    Fig.  8  ROC curves of different algorithms

    表  1  红外序列图像信息

    Table  1  Infrared sequence image information

    图像序列帧数图像大小目标数量目标尺寸
    Seq.6325256×25613×3
    Seq.7597256×25613×3
    Seq.8266256×25613×3
    Seq.9276256×25613×3
    Seq.10290256×25613×3
    下载: 导出CSV

    表  2  6种方法在Seq.6~10上的SCRG值比较

    Table  2  Comparison of SCRG values of six methods on Seq.6~10

    算法图像序列
    Seq.6Seq.7Seq.8Seq.9Seq.10
    TopHat 1 501.57 78.90 0.93 1 062.44 12.55
    IPI 24 184.64 332.68 8.66 70.49 19.08
    LCM 7 971.7 512.41 4.09 8 441.12 29.78
    MPCM 10 099.61 61.68 10.67 10 891.93 55.73
    LoG 3 613.22 81.99 2.2 2 967.2 15.06
    Ours 30 663 734.65 28.14 16 763.96 57.51
    下载: 导出CSV

    表  3  6种方法在Seq.6~10上的BSF值比较

    Table  3  Comparison of BSF values of six methods on Seq.6~10

    算法图像序列
    Seq.6Seq.7Seq.8Seq.9Seq.10
    TopHat 268.01 228.77 265.74 246.53 639.97
    IPI 25.19 10.48 10.35 14.87 12.84
    LCM 165.27 134.29 173.25 193.29 178.09
    MPCM 124.59 327.89 227.86 207.17 563.92
    LoG 555.63 421.91 493.86 506.00 1 182.76
    Ours 888.35 1 503.29 8 004.54 1 231.68 3 992.90
    下载: 导出CSV

    表  4  6种方法在Seq.6-10中平均运行时间

    Table  4  Average running time of six methods on Seq.6~10 1 s

    算法图像序列
    Seq.6Seq.7Seq.8Seq.9Seq.10
    TopHat 0.010 0 0.010 6 0.010 5 0.010 9 0.011 6
    IPI 6.925 6 7.152 9 7.287 3 7.041 5 8.189 0
    LCM 0.081 5 0.083 0 0.081 4 0.084 2 0.086 0
    MPCM 0.068 3 0.068 2 0.066 7 0.068 9 0.068 8
    LoG 0.019 2 0.020 7 0.020 6 0.020 0 0.020 9
    Ours 0.006 4 0.006 4 0.005 9 0.005 6 0.006 5
    下载: 导出CSV
  • [1] 王好贤, 董衡, 周志权. 红外单帧图像弱小目标检测技术综述[J]. 激光与光电子学进展,2019,56(8):114.

    WANG Haoxian, DONG Heng, ZHOU Zhiquan. Review on dim small target detection technologies in infrared single frame images[J]. Laser & Optoelectronics Progress,2019,56(8):114.
    [2] 何巍, 安博文, 潘胜达. 局部对比度先验下基于低秩模型的红外小目标检测方法[J]. 光子学报,2021,50(11):17.

    HE Wei, AN Bowen, PAN Shengda. Infrared small target detection method based on low rank model with local contrast prior[J]. Acta Photonica Sinica,2021,50(11):17.
    [3] 任向阳, 王杰, 马天磊, 等. 红外弱小目标检测技术综述[J]. 郑州大学学报(理学版),2020,52(2):1-21. doi: 10.13705/j.issn.1671-6841.2019557

    REN Xiangyang, WANG Jie, MA Tianlei, et al. Review on infrared dim and small target detection technology[J]. Journal of Zhengzhou University(Natural Science Edition),2020,52(2):1-21. doi: 10.13705/j.issn.1671-6841.2019557
    [4] 范鹏程, 张卫国, 刘万刚, 等. 基于嵌入式GPU的红外弱小目标检测算法[J]. 应用光学,2020,41(5):1089-1095. doi: 10.5768/JAO202041.0506004

    FAN Pengcheng, ZHANG Weiguo, LIU Wangang, et al. Infrared weak small target detection algorithm based on embedded GPU[J]. Journal of Applied Optics,2020,41(5):1089-1095. doi: 10.5768/JAO202041.0506004
    [5] 李佳. 低慢小无人机目标红外成像探测关键技术研究[D]. 西安: 西安电子科技大学, 2020.

    LI Jia. Research on the key technology of infrared imaging detection for low-slow-small UAV[D]. Xi’ An: Xidian University, 2020.
    [6] 张祥越, 丁庆海, 罗海波, 等. 基于改进LCM的红外小目标检测算法[J]. 红外与激光工程,2017(7):270-276.

    ZHANG Xiangyue, DING Qinghai, LUO Haibo, et al. Infrared dim target detection algorithm based on improved LCM[J]. Infrared and Laser Engineering,2017(7):270-276.
    [7] LIU C, XIE F Y, DONG X M, et al. Small target detection from infrared remote sensing images using local adaptive thresholding[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing,2022,15:1941-1952. doi: 10.1109/JSTARS.2022.3151928
    [8] 李俊宏, 张萍, 王晓玮, 等. 红外弱小目标检测算法综述[J]. 中国图象图形学报,2020,25(9):1739-1753.

    LI Junhong, ZHANG Ping, WANG Xiaowei, et al. Infrared small-target detection algorithms: a survey[J]. Journal of Image and Graphics,2020,25(9):1739-1753.
    [9] SHAO X P, FAN H, LU G X, et al. An improved infrared dim and small target detection algorithm based on the contrast mechanism of human visual system[J]. Infrared Physics & Technology,2012,55(5):403-408.
    [10] MARVASTI F S, MOSAVI M R, NASIRI M. Flying small target detection in IR images based on adaptive toggle operator[J]. IET Computer Vision,2018,12(4):527-534. doi: 10.1049/iet-cvi.2017.0327
    [11] 王笛, 沈涛. 基于三阶累积量的红外弱小目标单帧检测算法[J]. 电光与控制, 2020, 27(10): 27-30.

    WANG Di, SHEN Tao. Single-frame detection algorithm for infrared dim target based on third-order cumulant[J]. Electronics Optics & Control, 2020, 27(10): 27-30.
    [12] CHEN C L P, LI H, WEI Y T, et al. A local contrast method for small infrared target detection[J]. IEEE Transactions on Geoscience & Remote Sensing,2014,52(1):574-581.
    [13] WEI Y T, YOU X G, LI H. Multiscale patch-based contrast measure for small infrared target detection[J]. Pattern Recognition,2016,58:216-226. doi: 10.1016/j.patcog.2016.04.002
    [14] DENG H, SUN X P, LIU M L, et al. Small infrared target detection based on weighted local difference measure[J]. IEEE Transactions on Geoscience & Remote Sensing,2016,54(7):4204-4214.
    [15] GAO C G, MENG D Y, YANG Y, et al. Infrared patch-image model for small target detection in a single image[J]. IEEE Transactions on Image Processing,2013,22(12):4996-5009. doi: 10.1109/TIP.2013.2281420
    [16] DAI Y M, WU Y Q, SONG Y. Infrared small target and background separation via column-wise weighted robust principal component analysis[J]. Infrared Physics & Technology,2016(77):421-430.
    [17] KONG X, YANG C P, CAO S Y, et al. Infrared small target detection via nonconvex tensor fibered rank approximation[J]. IEEE Transactions on Geoscience and Remote Sensing,2021(99):1-21.
    [18] YANG X H, HU X C, ZHOU S H, et al. Interpolation-based contrastive learning for few-label semi-supervised learning[J/OL]. arXiv, [2022-06-22].https://arxiv.org/abs/2202.11915.
    [19] ZHOU W C S, XU C W, MCAULEY J L. BERT learns to teach: Knowledge distillation with meta learning[C]// Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics Dublin, Ireland: Association for Computational Linguistics, 2022: 7037-7049.
    [20] LIU Y, TU W X, ZHOU S H, et al. Deep graph clustering via dual correlation reduction[C]// Proceedings of the AAAI Conference on Artificial Intelligence. Vancouver, Canada: AAAI, 2022: 7603-7611.
    [21] LIU Y, YANG X H, ZHOU S H, et al. Simple contrastive graph clustering[J/OL]. arXiv,[2022-06-26].https://arxiv.org/abs/2205.07865.
    [22] 张汝榛, 张建林, 祁小平, 等. 复杂场景下的红外目标检测[J]. 光电工程,2020,47(10):128-137.

    ZHANG Ruzhen, ZHANG Jianlin, QI Xiaoping, et al. Infrared target detection and recognition in complex scene[J]. Opto-Electronic Engineering,2020,47(10):128-137.
    [23] LIN L K, WANG H Y, TANG Z X. Using deep learning to detect small targets in infrared oversampling images[J]. Journal of Systems Engineering and Electronics,2018,29(5):71-76.
    [24] 蔡伟, 徐佩伟, 杨志勇, 等. 复杂背景下红外图像弱小目标检测[J]. 应用光学,2021,42(4):643-650. doi: 10.5768/JAO202142.0402002

    CAI Wei, XU Peiwei, YANG Zhiyong, et al. Dim-small targets detection of infrared images in complex backgrounds[J]. Journal of Applied Optics,2021,42(4):643-650. doi: 10.5768/JAO202142.0402002
    [25] 杜鹏. 复杂背景条件下红外弱小目标检测关键技术研究[D]. 新疆: 新疆大学, 2020.

    DU Peng. Research on key technology of infrared detection of dim and small target under complex background conditions[D]. Xinjiang: Xinjiang University, 2020.
    [26] PANG D D, SHAN T, LI W, et al. Facet derivative-based multidirectional edge awareness and spatial–temporal tensor model for infrared small target detection[J]. IEEE Transactions on Geoscience and Remote Sensing,2022,60:1-15.
    [27] LI Q, NIE J Y, QU S C. A small target detection algorithm in infrared image by combining multi-response fusion and local contrast enhancement[J]. Optik International Journal for Light and Electron Optics,2021,241(3):166919.
    [28] 陈紫强, 梁晨. 低虚警率的红外弱小目标检测算法[J/OL]. 电讯技术, [2022-07-11]. http://kns.cnki.net/kcms/detail/51.1267.TN.20211117.0837.002.html.

    CHEN Ziqiang, LIANG Chen. Infrared dim target detection algorithm with low false alarm rate[J/OL]. Telecommunication Engineering,[2022-07-11]. http://kns.cnki.net/kcms/detail/51.1267.TN.20211117.0837.002.html.
    [29] 韩金辉, 蒋亚伟, 张小件, 等. 采用三层窗口局部对比度的红外小目标检测[J]. 红外与激光工程,2021,50(2):244-253.

    HAN Jinhui, JIANG Yawei, ZHANG Xiaojian, et al. Infrared small target detection using tri-layer window local contrast[J]. Infrared and Laser Engineering,2021,50(2):244-253.
  • 加载中
图(8) / 表(4)
计量
  • 文章访问数:  270
  • HTML全文浏览量:  191
  • PDF下载量:  46
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-07-18
  • 修回日期:  2022-09-09
  • 网络出版日期:  2022-09-24
  • 刊出日期:  2023-07-15

目录

    /

    返回文章
    返回