Optical system design of compact laser displacement sensor based on auto-collimation principle
-
摘要: 分析传统直射式和斜射式激光位移传感器的特性,结合两者的优势,设计了一种基于自准直原理的紧凑型激光位移传感器。在结构上,利用直线结构取代了大三角的光路布局,形成自准直式光路结构。引入分光比50%的分束镜,与光轴成45°角放置,将会聚透镜和成像透镜合为一枚,并使聚光镜、分束镜和光电探测器共轴,简化了系统结构,减小了仪器体积,同时,推导了符合自准直原理的Scheimpflug条件。利用光学设计软件Zemax对光学系统进行仿真,系统采用单透镜的结构形式,前表面为Forbes非球面,入瞳直径$ D=4\;\text{mm} $,视场角$ \text{2}\omega =4^{\circ}$,总长$L = 20\;{\text{mm}}$,成像质量和系统尺寸均达到最佳。该系统具有测量范围大、分辨力高、结构尺寸小、光能损失小等特点,通过实验与Keyence激光位移传感器比较,该系统能够保证测头分辨力$1\;{\text{μm}}$、综合检测精度$ \pm {\text{2}}\;{\text{μm}}$的技术指标。
-
关键词:
- 光学设计 /
- 激光位移传感器 /
- 自准直 /
- Scheimpflug条件 /
- 紧凑型
Abstract: The characteristics of traditional direct and oblique laser displacement sensor were analyzed. Combined with their advantages, a compact laser displacement sensor based on auto-collimation principle was designed. In the structure, the linear structure was used to replace the optical path layout of the large triangle, and the auto-collimation optical path structure was formed. A beam splitter with a splitting ratio of 50% was introduced and placed at an angle of 45° with the optical axis to combine the focusing lens and imaging lens into one, and made the condenser, beam splitter and photo-detector coaxial, which simplified the system structure and reduced the volume of the instrument. At the same time, the Scheimpflug condition conforming to the auto-collimation principle was derived. The optical design software Zemax was used to simulate the optical system. The system adopts the structure of single lens, the front surface is Forbes aspheric surface, the entrance pupil diameter D is 4 mm, the field angle 2 ω is 4°, the total length L is 20 mm, and the imaging quality and system size are the best. The system has the characteristics of large measurement range, high resolution, small structure size and small light energy loss. Compared with the experiments of Keyence laser displacement sensor, the system can ensure the technical indexes of probe resolution 1 μm and comprehensive detection accuracy ±2 μm.-
Key words:
- optical design /
- laser displacement sensor /
- auto-collimation /
- Scheimpflug condition /
- compact type
-
表 1 直射式和斜射式激光三角测头对比
Table 1 Comparison of direct and oblique laser triangular probe
直射式 斜射式 测量范围 大 小 分辨力 低 高 结构尺寸 小 大 光能损失 大 小 被测对象 表面较粗糙、散射性好 表面高反射率 表 2 主要技术指标
Table 2 Main technical indicators
主要技术参数 指标 成像波段/nm 650 入瞳直径/mm 4 视场角/(˚) 40 系统总长/mm 20 分辨力/μm 1 综合检测精度/μm ±2 表 3 非球面系数
Table 3 Aspheric coefficients
级数 非球面系数${a_m}$/mm 0 $2.370 \times {10^{ - 3}}$ 1 $1.985 \times {10^{ - 3}}$ 2 $6.450 \times {10^{ - 3}}$ 3 $3.328 \times {10^{ - 4}}$ 4 $ 4.057\times {10}^{-5} $ 表 4 圆柱度误差测量结果
Table 4 Cylindricity error measurement results
序号 回转
角度/(°)轴向
行程/mm测量值/mm 真值/mm 标准差/mm 1 0 50 0.039 0.039 0.001 05 2 40 100 0.041 0.040 3 80 150 0.040 0.040 4 120 200 0.041 0.040 5 160 250 0.041 0.039 6 200 300 0.039 0.040 7 240 350 0.040 0.041 8 280 400 0.041 0.040 9 320 450 0.039 0.039 10 360 500 0.041 0.040 表 5 Keyence和自准直激光三角测头参数比较
Table 5 Parameter comparison of Keyence and auto-collimation laser triangular probe
主要技术参数 Keyence激光
三角测头自准直激光
三角测头结构尺寸(系统总长)/mm >40 20 测量范围(被测距离)/mm 60 <40 >40 分辨力/μm 0.1 0.1 1 综合检测精度/μm 1 1 2 -
[1] KOULAKEZIAN A, OHANNESSIAN R, DENKIKIAN H. Wireless sensor node for real-time thickness measurement and localization of oil spills[C]. Xi'an: IEEE/ASME International Conference on Advanced Intelligent Mechatronics, 2008: 631-636. [2] REDDYHOFF T, KASOLANG S, DWYER-JOYCE R S. The phase shift of an ultrasonic pulseat an oil layer and determination of film thickness[J]. A.P. I. Mech. Eng. J. :Journal of Engineering Tribologyg,2005,219(6):387-400. [3] 沈本兰, 徐先峰, 姚磊, 等. 大量程激光位移传感器的成像系统设计[J]. 应用光学,2022,43(3):386-391. doi: 10.5768/JAO202243.0301002SHEN Benlan, XU Xianfeng, YAO Lei, et al. Design of imaging system for large range laser displacement sensor[J]. Journal of Applied Optics,2022,43(3):386-391. doi: 10.5768/JAO202243.0301002 [4] 汪琛. 便携式单镜头激光三角测厚仪研究[D]. 武汉: 华中科技大学, 2013.WANG Chen. Research on portable single lens laser triangulation thickness gauge[D]. Wuhan: Huazhong University of Science and Technology, 2013. [5] VILACA J L, FONSECA J C, PINHO A M. Non-contact 3D acquisition system based on stereo vision and laser triangulation[J]. Machine Vision and Applications,2010,21(3):341-350. doi: 10.1007/s00138-008-0166-7 [6] 闫加俊. 小型激光三角探头光学系统设计[D]. 长春: 长春理工大学, 2012.YAN Jiajun. The optical system design of a miniaturization laser triangulation probe[D]. Changchun: Changchun University of Science and Technology, 2012. [7] 刘玉杰. 便携式短距离激光测距仪的研究[D]. 西安: 西安工业大学, 2015.LIU Yujie. Research on portable short distance laser rangefinder[D]. Xi'an: Xi'an Technological University, 2015. [8] 王丹丹. 大型回转体形位误差非接触测量系统研究[D]. 长春: 长春理工大学, 2016.WANG Dandan. Study on non-contact measurement system for shape and position errors of large scale rotary body[D]. Changchun: Changchun University of Science and Technology, 2016. [9] 何晓敏. 高精度激光三角测量距离系统的研究与设计[D]. 兰州: 兰州交通大学, 2015.HE Xiaomin. Researches and design of laser triangulation distance measurement system with high accuracy[D]. Lanzhou: Lanzhou Jiaotong University, 2015. [10] 韩冰. 具有自准功能的激光三角传感头设计[D]. 长春: 长春理工大学, 2013.HAN Bing. Design of self-collimation laser triangulation sensor[D]. Changchun: Changchun University of Science and Technology, 2013. [11] 杨小伟. 利用分光镜实现的单透镜激光三角测量系统[D]. 成都: 西南交通大学, 2010.YANG Xiaowei. The study of the laser triangulation measuring system based on single lens[D]. Chengdu: Southwest Jiaotong University, 2010. [12] 杜华娜, 杨铁牛, 胡金洲, 等. 基于激光三角法的内径测量不确定度分析[J]. 五邑大学学报(自然科学版),2021,35(1):42-48.DU Huana, YANG Tieniu, HU Jinzhou, et al. An uncertainty analysisi of inner diameter measurement based on laser displacement triangulation[J]. Journal of Wuyi University(Natural Science Edition),2021,35(1):42-48. [13] 张欣婷, 亢磊, 安志勇, 等. 基于PSD的单透镜激光三角测头设计[J]. 光子学报,2018,47(7):77-84.ZHANG Xinting, KANG Lei, AN Zhiyong, et al. Design of a single lens laser triangulation probe based on PSD[J]. Acta Photonica Sinica,2018,47(7):77-84. [14] 张欣婷, 亢磊, 安志勇, 等. 改进型激光三角测头设计[J]. 红外与激光工程,2018,47(10):305-309.ZHANG Xinting, KANG Lei, AN Zhiyong, et al. Improved laser triangulation probe design[J]. Infrared and Laser Engineering,2018,47(10):305-309. [15] 韩迪. 列车车轴多参数非接触检测系统研究[D]. 长春: 长春理工大学, 2016.HAN Di. Research on non-contact detection system for multi-parameter of train axles[D]. Changchun: Changchun University of Science and Technology, 2016. [16] 姜蕾. 双光路对称补偿的激光三角法位移测量系统[D]. 杭州: 浙江大学, 2017.JIANG Lei. Laser triangulation displacement measuring system with compensation of dual symmetrical optical path[D]. Hangzhou: Zhejiang University, 2017. -