主动式液晶超表面研究进展

彭畅, 李子乐, 贺志学, 郑国兴

彭畅, 李子乐, 贺志学, 郑国兴. 主动式液晶超表面研究进展[J]. 应用光学, 2022, 43(4): 744-759. DOI: 10.5768/JAO202243.0405001
引用本文: 彭畅, 李子乐, 贺志学, 郑国兴. 主动式液晶超表面研究进展[J]. 应用光学, 2022, 43(4): 744-759. DOI: 10.5768/JAO202243.0405001
PENG Chang, LI Zile, HE Zhixue, ZHENG Guoxing. Research progress of active metasurfaces based on liquid crystals[J]. Journal of Applied Optics, 2022, 43(4): 744-759. DOI: 10.5768/JAO202243.0405001
Citation: PENG Chang, LI Zile, HE Zhixue, ZHENG Guoxing. Research progress of active metasurfaces based on liquid crystals[J]. Journal of Applied Optics, 2022, 43(4): 744-759. DOI: 10.5768/JAO202243.0405001

主动式液晶超表面研究进展

基金项目: 国家重点研发计划(2021YFE0205800);国家自然科学基金(12174292, 11904267, 91950110)
详细信息
    作者简介:

    彭畅(1999—),女,博士研究生,主要从事主动式光学超表面研究。E-mail:pengchang_eis@whu.edu.cn

    通讯作者:

    郑国兴(1977—),男,博士,教授,主要从事光学超表面及微纳光学研究。E-mail:gxzheng@whu.edu.cn

  • 中图分类号: TN26;O438.1

Research progress of active metasurfaces based on liquid crystals

  • 摘要:

    超表面具有亚波长尺度下精密高效的光波操控能力,但在其单独实现主动式调控方面,目前仍有诸多技术困难亟待克服。液晶与超表面的结合有望发挥各自的长处,实现一种分辨率高、衍射角大、超紧凑的新型主动式光调控器件。以液晶与超表面两部分功能设计的独立与否作为分类依据,回顾了近年来主动式液晶超表面的研究进展,具体包括液晶波片与偏振敏感超表面结合、液晶环境与共振型超表面结合、液晶与超表面光学性质互补等。最后对主动式液晶超表面所面临的挑战以及发展前景进行了讨论和展望。

    Abstract:

    The metasurfaces have the ability to precisely and efficiently manipulate the light wave at sub-wavelength scale. However, there are still many technical difficulties to be overcome when it comes to the realization of active control separately. The combination of liquid crystal (LCs) and metasurface is expected to give full play to their respective advantages to achieve a new type of active optical control device with high resolution, large diffraction angle and ultra-compact structure. The independent functional design of LC and metasurface was taken as the classification basis to review the research progress of active LC metasurfaces in recent years, which specifically included the combination of LC wave plate and polarization-sensitive metasurfaces, the combination of LC environment and resonant metasurfaces, and complementation of optical properties with LC and metasurface. Finally, the challenges and development prospects of active LC metasurface were discussed and prospected.

  • 《等离子体光学加工关键技术研究现状》是关于等离子体加工技术的综述文章。等离子体加工技术,是近年来发展起来的先进光学制造技术,具有快速缓解或去除传统光学加工方法导致的表面/亚表面损伤,以及高效、高精度和高分辨率修整光学面形的优势。该文对包括作者所在单位在内的国内外各研究机构在等离子体加工技术涉及的射流特性、界面物化反应、损伤去除机理、去除函数、加工热效应和工艺定位等关键技术研究内容及成果进行了分析,对等离子体的新型光学加工技术进行了介绍。该文条理清晰,收集资料全面,引文文献新颖,对于从事等离子光学加工或其他光学加工工艺技术人员有较大参考价值。

    《快速周扫探测系统扫描平台的高精度稳定控制》对扫描平台的高精度稳定控制用于快速周扫探测系统设计与实现进行了研究,指出了扫描平台的控制是系统清晰稳定成像的关键。围绕提高扫描平台的控制精度、抗干扰性以及稳定性等问题展开研究;建立了双向惯性稳定平台数学模型;控制算法上采用了分数阶PID控制器,提出了扫描平台的控制策略,并对控制性能进行了分析与验证。仿真和硬件实验数据均表明,分数阶PID在控制精度和抗扰动能力方面相比传统PID具有明显的优势,具有重要的理论意义和应用价值。

    《基于光的反射与折射定律的表述方法推导及应用》介绍推导了光的反射定律和折射定律的矢量、矩阵及四元数3种表述方法,通过Matlab辅助下的计算分析,实现了矢量、矩阵和四元数表述方法在施密特棱镜检验光路的应用,取得了较好的结果,具有一定的借鉴价值。

    《基于深度学习的气溶胶荧光光谱识别应用研究》采用激光诱导荧光技术原理,以单光子探测器为核心器件,设计并搭建了一种高效的荧光光谱仪,对于该光谱仪采集的数据,探索了以一维向量和二维矩阵两种输入形式来实现荧光光谱的识别与分类,并研究对比了主成分分析网络、卷积神经网络和全卷积网络等深度学习网络的识别与分类效果。用于空气中高危病原微生物的识别与分类(识别准确率98.05%。),实现对微生物浓度的精准预测(准确率98.97%)。该研究技术先进,具有学术和工程应用价值,对于环境安全具有重要意义。

    《大量程激光位移传感器的成像系统设计》为了解决目前国内自主研发的激光位移传感器基准工作距离短和测量范围小的问题,设计了一种适用于远距离测量的大量程激光位移传感器成像光学系统,完成了系统的优化设计和性能分析,重点分析了成像光学系统对测距精度的影响,所得到的的设计方法,对于相关领域设计人员具有一定的参考价值。

    《基于自由曲面设计的全景鱼眼光学系统》介绍了一种基于自由曲面设计的全景鱼眼光学系统,为鱼眼光学镜头提供了新的设计思路,提出了xy焦距不同的设计方法,以达到更高的像素利用率。论文参考了非球面加工类和模造玻璃镜片现状等相关文章,在设计时应已经进行了加工性的考虑,应用意义较大。

    《面向边缘智能光学感知的航空紧固件旋转检测》提出一种面向边缘智能光学感知的航空紧固件检测方法。该方法将轻量化的旋转检测方法应用到航空紧固件的检测任务中。基于强化语义和优化空间的特征融合机制提升模型的检测性能,将水平检测改进为旋转检测,显著提升检测精度,并且便于紧固件的自动抓取分拣工作。实验结果表明,与传统方法相比,该方法具有更高的检测精度和更少的参数量。

  • 图  1   主动式液晶超表面

    Figure  1.   Active metasurfaces based on liquid crystals

    图  2   液晶波片放于超表面之前的动态全息显示

    Figure  2.   Dynamic holographic display of liquid crystal wave plate set before metasurface

    图  3   液晶波片放于超表面之后的动态全息显示

    Figure  3.   Dynamic holographic display of liquid crystal wave plate set behind metasurface

    图  4   基于液晶波片的超透镜焦点位置控制

    Figure  4.   Focus position control of metalens based on liquid crystal wave plate

    图  5   基于液晶波片对单波长入射光的透射率调制

    Figure  5.   Transmittance modulation of single-wavelength incident light based on liquid crystal wave plate

    图  6   基于液晶波片对白光入射光的结构色调制

    Figure  6.   Structural-color modulation of white incident light based on liquid crystal wave plate

    图  7   液晶赋予超表面可调的圆二向色性

    Figure  7.   Tunable circular dichroism of metasurface based on liquid crystal

    图  8   液晶折射率作为变量参与超表面的参数优化过程

    Figure  8.   Parameter optimization process of metasurface for refractive index of liquid crystal as variable

    图  9   液晶与超表面光学特性互补

    Figure  9.   Complementation of optical properties with liquid crystal and metasurface

    图  10   基于温控液晶的超表面共振特性调节

    Figure  10.   Resonance characteristics modulation of metasurface based on temperature-controlled liquid crystal

    图  11   基于电控液晶的超表面共振特性调节

    Figure  11.   Resonance characteristics modulation of metasurface based on electronic-controlled liquid crystal

  • [1]

    YU N, GENEVET P, KATS MIKHAIL A, et al. Light Propagation with Phase Discontinuities: Generalized Laws of Reflection and Refraction[J]. Science,2011,334(6054):333-337. doi: 10.1126/science.1210713

    [2]

    KHORASANINEJAD M, ZHU A Y, ROQUES-CARMES C, et al. Polarization-insensitive metalenses at visible wavelengths[J]. Nano Letters,2016,16(11):7229-7234. doi: 10.1021/acs.nanolett.6b03626

    [3]

    LIN R J, SU V-C, WANG S, et al. Achromatic metalens array for full-colour light-field imaging[J]. Nature Nanotechnology,2019,14(3):227-231. doi: 10.1038/s41565-018-0347-0

    [4]

    WANG S, WU P C, SU V C, et al. Broadband achromatic optical metasurface devices[J]. Nature Communications,2017,8(1):187. doi: 10.1038/s41467-017-00166-7

    [5] 仇宫润, 赵峰, 王琨. 近红外超透镜的设计与制备[J]. 应用光学,2021,42(06):1102-1106. doi: 10.5768/JAO202142.0604002

    QIU Gongrun, ZHAO Feng, WANG Kun. Design and fabrication of near-infrared metalens[J]. Journal of Applied Optics,2021,42(06):1102-1106. doi: 10.5768/JAO202142.0604002

    [6]

    NI X, KILDISHEV A V, SHALAEV V M. Metasurface holograms for visible light[J]. Nature Communications,2013,4(1):2807. doi: 10.1038/ncomms3807

    [7]

    ZHENG G, MüHLENBERND H, KENNEY M, et al. Metasurface holograms reaching 80% efficiency[J]. Nature Nanotechnology,2015,10(4):308-312. doi: 10.1038/nnano.2015.2

    [8]

    DENG J, DENG L, GUAN Z, et al. Multiplexed anticounterfeiting meta-image displays with single-sized nanostructures[J]. Nano Letters,2020,20(3):1830-1838. doi: 10.1021/acs.nanolett.9b05053

    [9]

    YUE F, ZHANG C, ZANG X F, et al. High-resolution grayscale image hidden in a laser beam[J]. Light: Science & Applications,2018,7(1):17129.

    [10]

    DENG J, LI Z, ZHENG G, et al. Depth perception based 3D holograms enabled with polarization-independent metasurfaces[J]. Optics Express,2018,26(9):11843-11849. doi: 10.1364/OE.26.011843

    [11]

    DAI Q, GUAN Z, CHANG S, et al. A single-celled tri-functional metasurface enabled with triple manipulations of light[J]. Advanced Functional Materials,2020,30(50):2003990. doi: 10.1002/adfm.202003990

    [12]

    KAMALI S M, ARBABI E, ARBABI A, et al. Highly tunable elastic dielectric metasurface lenses[J]. Laser & Photonics Reviews,2016,10(6):1002-1008.

    [13]

    ZHANG C, JING J, WU Y, et al. Stretchable all-dielectric metasurfaces with polarization-insensitive and full-spectrum response[J]. ACS Nano,2020,14(2):1418-1426. doi: 10.1021/acsnano.9b08228

    [14]

    ZHANG X, ZHOU Y, ZHENG H, et al. Reconfigurable metasurface for image processing[J]. Nano Letters,2021,21(20):8715-8722. doi: 10.1021/acs.nanolett.1c02838

    [15]

    ABDOLLAHRAMEZANI S, HEMMATYAR O, TAGHINEJAD M, et al. Electrically driven reprogrammable phase-change metasurface reaching 80% efficiency[J]. Nature Communications,2022,13(1):1696. doi: 10.1038/s41467-022-29374-6

    [16]

    LU L, DONG Z, TIJIPTOHARSONO F, et al. Reversible tuning of Mie resonances in the visible spectrum[J]. ACS Nano,2021,15(12):19722-19732. doi: 10.1021/acsnano.1c07114

    [17]

    SALARY M M, MOSALLAEI H. Tunable all-dielectric metasurfaces for phase-only modulation of transmitted light based on quasi-bound states in the continuum[J]. ACS Photonics,2020,7(7):1813-1829. doi: 10.1021/acsphotonics.0c00554

    [18]

    SHALAGINOV M Y, AN S, ZHANG Y, et al. Reconfigurable all-dielectric metalens with diffraction-limited performance[J]. Nature Communications,2021,12(1):1225. doi: 10.1038/s41467-021-21440-9

    [19]

    WU Y, YANG W, FAN Y, et al. TiO2 metasurfaces: from visible planar photonics to photochemistry[J]. Science Advances,2019,5(11):eaax0939. doi: 10.1126/sciadv.aax0939

    [20]

    LEITIS A, HEßLER A, WAHL S, et al. All-dielectric programmable huygens' metasurfaces[J]. Advanced Functional Materials,2020,30(19):1910259. doi: 10.1002/adfm.201910259

    [21]

    SHEN C, SUN J, QI Y, et al. Electrically tunable all-dielectric metasurfaces integrated with nematic liquid crystals for information encryption[J]. IEEE Photonics Journal,2021,13(4):1-5.

    [22]

    WAN C, LI Z, WAN S, et al. Electric-driven meta-optic dynamics for simultaneous near-/far-field multiplexing display[J]. Advanced Functional Materials,2022,32(10):2110592. doi: 10.1002/adfm.202110592

    [23]

    KIM I, ANSARI M A, MEHMOOD M Q, et al. stimuli-responsive dynamic metaholographic displays with designer liquid crystal modulators[J]. Advanced Materials,2020,32(50):2004664. doi: 10.1002/adma.202004664

    [24]

    KIM I, KIM W-S, KIM K, et al. Holographic metasurface gas sensors for instantaneous visual alarms[J]. Science Advances,2021,7(15):eabe9943. doi: 10.1126/sciadv.abe9943

    [25]

    HU Y, OU X, ZENG T, et al. Electrically tunable multifunctional polarization-dependent metasurfaces integrated with liquid crystals in the visible region[J]. Nano Letters,2021,21(11):4554-4562. doi: 10.1021/acs.nanolett.1c00104

    [26]

    KIM I, JANG J, KIM G, et al. Pixelated bifunctional metasurface-driven dynamic vectorial holographic color prints for photonic security platform[J]. Nature Communications,2021,12(1):3614. doi: 10.1038/s41467-021-23814-5

    [27]

    ZHOU S, SHEN Z, LI X, et al. Liquid crystal integrated metalens with dynamic focusing property[J]. Optics Letters,2020,45(15):4324-4327. doi: 10.1364/OL.398601

    [28]

    BADLOE T, KIM I, KIM Y, et al. Electrically tunable bifocal metalens with diffraction-limited focusing and imaging at visible wavelengths[J]. Advanced Science,2021,8(21):2102646. doi: 10.1002/advs.202102646

    [29]

    BUCHNEV O, OU J Y, KACZMAREK M, et al. Electro-optical control in a plasmonic metamaterial hybridised with a liquid-crystal cell[J]. Optics Express,2013,21(2):1633-1638. doi: 10.1364/OE.21.001633

    [30]

    DECKER M, KREMERS C, MINOVICH A, et al. Electro-optical switching by liquid-crystal controlled metasurfaces[J]. Optics Express,2013,21(7):8879-8885. doi: 10.1364/OE.21.008879

    [31]

    SU H, WANG H, ZHAO H, et al. Liquid-crystal-based electrically tuned electromagnetically induced transparency metasurface switch[J]. Scientific Reports,2017,7(1):17378. doi: 10.1038/s41598-017-17612-7

    [32]

    SHEN Z X, ZHOU S H, GE S J, et al. Liquid crystal enabled dynamic cloaking of terahertz Fano resonators[J]. Applied Physics Letters,2019,114(4):041106. doi: 10.1063/1.5082224

    [33]

    LEE Y, PARK M K, KIM S, et al. Electrical broad tuning of plasmonic color filter employing an asymmetric-lattice nanohole array of metasurface controlled by polarization rotator[J]. ACS Photonics,2017,4(8):1954-1966. doi: 10.1021/acsphotonics.7b00249

    [34]

    XIE Z W, YANG J H, VASHISTHA V, et al. Liquid-crystal tunable color filters based on aluminum metasurfaces[J]. Optics Express,2017,25(24):30764-30770. doi: 10.1364/OE.25.030764

    [35]

    SHARMA M, HENDLER N, ELLENBOGEN T. Electrically switchable color tags based on active liquid-crystal plasmonic metasurface platform[J]. Advanced Optical Materials,2020,8(7):1901182. doi: 10.1002/adom.201901182

    [36]

    SHARMA M, ELLENBOGEN T. An all-optically controlled liquid-crystal plasmonic metasurface platform[J]. Laser & Photonics Reviews,2020,14(11):2000253.

    [37]

    XIAO D, LIU Y J, YIN S, et al. Liquid-crystal-loaded chiral metasurfaces for reconfigurable multiband spin-selective light absorption[J]. Optics Express,2018,26(19):25305-25314. doi: 10.1364/OE.26.025305

    [38]

    YIN S, JI W, XIAO D, et al. Intrinsically or extrinsically reconfigurable chirality in plasmonic chiral metasurfaces[J]. Optics Communications,2019,448:10-14. doi: 10.1016/j.optcom.2019.05.006

    [39]

    YIN S, XIAO D, LIU J, et al. Reconfigurable chiral metasurface absorbers based on liquid crystals[J]. IEEE Photonics Journal,2018,10(6):1-9.

    [40]

    KOMAR A, PANIAGUA-DOMíNGUEZ R, MIROSHNICHENKO A, et al. Dynamic beam switching by liquid crystal tunable dielectric metasurfaces[J]. ACS Photonics,2018,5(5):1742-1748. doi: 10.1021/acsphotonics.7b01343

    [41]

    SHEN Y, SHEN Z, WANG Y, et al. Electrically tunable terahertz focusing modulator enabled by liquid crystal integrated dielectric metasurface[J]. Crystals,2021,11(5):514. doi: 10.3390/cryst11050514

    [42]

    BOSCH M, SHCHERBAKOV M R, WON K, et al. Electrically actuated varifocal lens based on liquid-crystal-embedded dielectric metasurfaces[J]. Nano Letters,2021,21(9):3849-3856. doi: 10.1021/acs.nanolett.1c00356

    [43]

    CHUNG H, MILLER O D. Tunable metasurface inverse design for 80% switching efficiencies and 144° angular deflection[J]. ACS Photonics,2020,7(8):2236-2243. doi: 10.1021/acsphotonics.0c00787

    [44]

    LI J, YU P, ZHANG S, et al. Electrically-controlled digital metasurface device for light projection displays[J]. Nature Communications,2020,11(1):3574. doi: 10.1038/s41467-020-17390-3

    [45]

    YU P, LI J, LIU N. Electrically tunable optical metasurfaces for dynamic polarization conversion[J]. Nano Letters,2021,21(15):6690-6695. doi: 10.1021/acs.nanolett.1c02318

    [46]

    SHEN Z X, ZHOU S H, LI X N, et al. Liquid crystal integrated metalens with tunable chromatic aberration[J]. Advanced Photonics,2020,2(3):1-7.

    [47]

    DRIENCOURT L, FEDERSPIEL F, KAZAZIS D, et al. Electrically tunable multicolored filter using birefringent plasmonic resonators and liquid crystals[J]. ACS Photonics,2020,7(2):444-453. doi: 10.1021/acsphotonics.9b01404

    [48]

    JI Y, FAN F, ZHANG X, et al. Active terahertz anisotropy and dispersion engineering based on dual-frequency liquid crystal and dielectric metasurface[J]. Journal of Lightwave Technology,2020,38(15):4030-4036.

    [49]

    DICKSON W, WURTZ G A, EVANS P R, et al. Electronically controlled surface plasmon dispersion and optical transmission through metallic hole arrays using liquid crystal[J]. Nano Letters,2008,8(1):281-286. doi: 10.1021/nl072613g

    [50]

    HSIAO V K S, ZHENG Y B, JULURI B K, et al. Light-driven plasmonic switches based on au nanodisk arrays and photoresponsive liquid crystals[J]. Advanced Materials,2008,20(18):3528-3532. doi: 10.1002/adma.200800045

    [51]

    ATORF B, MüHLENBERND H, MULDARISNUR M, et al. Electro-optic tuning of split ring resonators embedded in a liquid crystal[J]. Optics Letters,2014,39(5):1129-1132. doi: 10.1364/OL.39.001129

    [52]

    SAUTTER J, STAUDE I, DECKER M, et al. Active tuning of all-dielectric metasurfaces[J]. ACS Nano,2015,9(4):4308-4315. doi: 10.1021/acsnano.5b00723

    [53]

    PARRY M, KOMAR A, HOPKINS B, et al. Active tuning of high-Q dielectric metasurfaces[J]. Applied Physics Letters,2017,111(5):053102. doi: 10.1063/1.4997301

    [54]

    ZHAO W, JIANG H, LIU B, et al. Fano resonance based optical modulator reaching 85% modulation depth[J]. Applied Physics Letters,2015,107(17):171109. doi: 10.1063/1.4935031

    [55]

    LIU C X, YANG F, FU X J, et al. Programmable manipulations of terahertz beams by transmissive digital coding metasurfaces based on liquid crystals[J]. Advanced Optical Materials,2021,9(22):2100932. doi: 10.1002/adom.202100932

    [56]

    KOMAR A, FANG Z, BOHN J, et al. Electrically tunable all-dielectric optical metasurfaces based on liquid crystals[J]. Applied Physics Letters,2017,110(7):071109. doi: 10.1063/1.4976504

    [57]

    ZOU C, KOMAR A, FASOLD S, et al. Electrically tunable transparent displays for visible light based on dielectric metasurfaces[J]. ACS Photonics,2019,6(6):1533-1540. doi: 10.1021/acsphotonics.9b00301

    [58]

    SUN M, XU X, SUN X W, et al. Efficient visible light modulation based on electrically tunable all dielectric metasurfaces embedded in thin-layer nematic liquid crystals[J]. Scientific Reports,2019,9(1):8673. doi: 10.1038/s41598-019-45091-5

    [59]

    LI S Q, XU X, MARUTHIYODAN VEETIL R, et al. Phase-only transmissive spatial light modulator based on tunable dielectric metasurface[J]. Science,2019,364(6445):1087-1090. doi: 10.1126/science.aaw6747

    [60]

    ZHU S, XU Z, ZHANG H, et al. Liquid crystal integrated metadevice for reconfigurable hologram displays and optical encryption[J]. Optics Express,2021,29(6):9553-9564. doi: 10.1364/OE.419914

    [61]

    KOWERDZIEJ R, OLIFIERCZUK M, PARKA J, et al. Terahertz characterization of tunable metamaterial based on electrically controlled nematic liquid crystal[J]. Applied Physics Letters,2014,105(2):022908. doi: 10.1063/1.4890850

    [62]

    WANG L, GE S, HU W, et al. Graphene-assisted high-efficiency liquid crystal tunable terahertz metamaterial absorber[J]. Optics Express,2017,25(20):23873-23879. doi: 10.1364/OE.25.023873

    [63]

    ZHOU S, SHEN Z, KANG R, et al. Liquid crystal tunable dielectric metamaterial absorber in the terahertz range[J]. Applied Sciences,2018,8(11):2211. doi: 10.3390/app8112211

    [64]

    BOHN J, BUCHER T, CHONG K E, et al. Active tuning of spontaneous emission by mie-resonant dielectric metasurfaces[J]. Nano Letters,2018,18(6):3461-3465. doi: 10.1021/acs.nanolett.8b00475

    [65]

    ROCCO D, CARLETTI L, CAPUTO R, et al. Switching the second harmonic generation by a dielectric metasurface via tunable liquid crystal[J]. Optics Express,2020,28(8):12037-12046. doi: 10.1364/OE.386776

    [66]

    DOLAN J A, CAI H, DELALANDE L, et al. Broadband liquid crystal tunable metasurfaces in the visible: liquid crystal inhomogeneities across the metasurface parameter space[J]. ACS Photonics,2021,8(2):567-575. doi: 10.1021/acsphotonics.0c01599

    [67]

    BUCHNEV O, PODOLIAK N, KACZMAREK M, et al. Electrically controlled nanostructured metasurface loaded with liquid crystal: toward multifunctional photonic switch[J]. Advanced Optical Materials,2015,3(5):674-679. doi: 10.1002/adom.201400494

    [68]

    CHOU J, PARAMESWARAN L, KIMBALL B, et al. Electrically switchable diffractive waveplates with metasurface aligned liquid crystals[J]. Optics Express,2016,24(21):24265-24273. doi: 10.1364/OE.24.024265

    [69]

    ZOU C, AMAYA C, FASOLD S, et al. Multiresponsive dielectric metasurfaces[J]. ACS Photonics,2021,8(6):1775-1783. doi: 10.1021/acsphotonics.1c00371

图(11)
计量
  • 文章访问数:  1318
  • HTML全文浏览量:  546
  • PDF下载量:  318
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-05-15
  • 修回日期:  2022-06-09
  • 网络出版日期:  2022-06-20
  • 刊出日期:  2022-07-14

目录

    /

    返回文章
    返回