留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于DETR的道路环境下双目测量系统

康轶譞 刘宇 王亚伟 周立君 郭城 王怡恬

康轶譞, 刘宇, 王亚伟, 周立君, 郭城, 王怡恬. 基于DETR的道路环境下双目测量系统[J]. 应用光学, 2023, 44(4): 786-791. doi: 10.5768/JAO202344.0402003
引用本文: 康轶譞, 刘宇, 王亚伟, 周立君, 郭城, 王怡恬. 基于DETR的道路环境下双目测量系统[J]. 应用光学, 2023, 44(4): 786-791. doi: 10.5768/JAO202344.0402003
KANG Yixuan, LIU Yu, WANG Yawei, ZHOU Lijun, GUO Cheng, WANG Yitian. DETR-based binocular measurement system in road environment[J]. Journal of Applied Optics, 2023, 44(4): 786-791. doi: 10.5768/JAO202344.0402003
Citation: KANG Yixuan, LIU Yu, WANG Yawei, ZHOU Lijun, GUO Cheng, WANG Yitian. DETR-based binocular measurement system in road environment[J]. Journal of Applied Optics, 2023, 44(4): 786-791. doi: 10.5768/JAO202344.0402003

基于DETR的道路环境下双目测量系统

doi: 10.5768/JAO202344.0402003
基金项目: 十四五陆军预研基金(627010402)
详细信息
    作者简介:

    康轶譞(1995—),男,硕士,助理工程师,主要从事深度学习方面的研究。E-mail:kangyixuan13@163.com

  • 中图分类号: TN29

DETR-based binocular measurement system in road environment

  • 摘要: DETR(detection transformer)算法是一个基于Transformer的目标检测算法,具有检测速度快、检测效果好的优势。介绍了一种利用DETR算法及双目视觉原理对道路环境下的人、车、自行车、信号灯等目标进行构建的测量系统。分析了双目测距、相机标定、目标检测以及目标匹配的原理,并以此为基础构建了测量系统。采用目标检测算法检测视野中的目标,利用双目视觉原理对检测到的目标进行测距,同时分析了测量系统中测量误差的来源,并计算其对结果的影响。该算法在KITTI数据集及现实环境中进行测试,测量系统基线为45 cm,对15 m~80 m的指定目标检出率高于90.6%,测距误差小于5.8%,在RTX 2080Ti平台上能够实时运行。
  • 图  1  双目视觉测量系统图

    Fig.  1  Diagram of binocular vision measurement system

    图  2  像面坐标系与真实坐标系的转化图

    Fig.  2  Transformation diagram of image plane coordinate system and real coordinate system

    图  3  DETR算法结构图

    Fig.  3  Structure diagram of DETR algorithm

    图  4  KITTI数据集测试结果

    Fig.  4  Test results of KITTI dataset

    图  5  双目测量系统测试效果

    Fig.  5  Detection effect of binocular measurement system

    表  1  双目视觉测量系统检测结果分析

    Table  1  Detection results analysis of binocular vision measurement system

    真实目标
    距离/m
    目标数检出
    目标数
    成功
    测距数
    测距
    正确数
    平均测距
    误差/%
    5~157 3087 1086 8456 2577.9
    15~257 4647 0146 7276 2195.1
    25~407 8367 1756 9346 6264.8
    40~804 2143 8203 6743 5915.8
    80~1202 1271 8251 7511 6936.4
    下载: 导出CSV

    表  2  本文算法与其它算法对15 m~80 m目标的测量结果比较

    Table  2  Detection results comparison of 15 m~80 m targets with proposed algorithm and other algorithms

    算法检出率/%测距误差/%运行帧率/(帧/s)
    本文算法92.35.221
    GC-Net93.15.91.1
    GANet93.55.210.2
    PSMNet93.94.82.4
    Monodepth92.96.915
    下载: 导出CSV

    表  3  双目测量系统测试结果分析

    Table  3  Detection results analysis of binocular measurement system

    目标序号目标真实距离/m输出概率值测距值/m测距误差/%
    118.940.9918.253.64
    219.810.9818.954.34
    321.181.0020.821.70
    422.560.9921.922.84
    下载: 导出CSV
  • [1] NIE G Y, CHENG M M, LIU Y, et al. Multi-level context ultra-aggregation for stereo matching[C]//2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Long Beach: IEEE, 2020: 3278-3286.
    [2] DENG H, LIAO Q M, LU Z Q, et al. Parallax contextual representations for stereo matching[C]//2021 IEEE International Conference on Image Processing (ICIP). Anchorage: IEEE, 2021: 3193-3197.
    [3] ZBONTAR J, LECUN Y. Stereo matching by training a convolutional neural network to compare image patches[J]. Journal of Machine Learning Research,2016,17:2287-2318.
    [4] PANG J H, SUN W X, REN J S, et al. Cascade residual learning: a two-stage convolutional neural network for stereo matching[C]//2017 IEEE International Conference on Computer Vision Workshops (ICCVW). Venice: IEEE, 2018: 878-886.
    [5] KHAMIS S, FANELLO S, RHEMANN C, et al. StereoNet: guided hierarchical refinement for real-time edge-aware depth prediction[M]//Computer Vision-ECCV 2018. Munich: Springer International Publishing, 2018: 596-613.
    [6] CHANG J R, CHEN Y S. Pyramid stereo matching network[C]//2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Salt Lake City: IEEE, 2018: 5410-5418.
    [7] XU H F, ZHANG J Y. AANet: adaptive aggregation network for efficient stereo matching[C]//2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Seattle: IEEE, 2020: 1956-1965.
    [8] LIANG Z F, FENG Y L, GUO Y L, et al. Learning for disparity estimation through feature constancy[C]//2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Salt Lake City: IEEE, 2018: 2811-2820.
    [9] POGGI M, PALLOTTI D, TOSI F, et al. Guided stereo matching[C]//2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Long Beach: IEEE, 2020: 979-988.
    [10] ASHISH V, NOAM S, NIKI P, et al. Attention is all you need[C]//2017 Conference on Neural Information Processing Systems. Long Beach: IEEE, 2017: 3058-3068.
    [11] TOUVRON H, CORD M, DOUZE M, et al. Training data-efficient image transformers and distillation through attention[EB/OL]. (2021-01-15) [2022-03-15]. https://arxiv.org/abs/2012.12877.
    [12] LIU Z, LIN Y T, CAO Y, et al. Swin transformer: hierarchical vision transformer using shifted windows[C]//2021 IEEE/CVF International Conference on Computer Vision (ICCV). Montreal: IEEE, 2022: 9992-10002.
    [13] 张琦, 胡广地, 李雨生, 等. 改进Fast-RCNN的双目视觉车辆检测方法[J]. 应用光学,2018,39(6):832-838.

    ZHANG Qi, HU Guangdi, LI Yusheng, et al. Binocular vision vehicle detection method based on improved Fast-RCNN[J]. Journal of Applied Optics,2018,39(6):832-838.
    [14] ZHANG Z Y. A flexible new technique for camera calibration[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence,2000,22(11):1330-1334. doi: 10.1109/34.888718
    [15] CARION N, MASSA F, SYNNAEVE G, et al. End-to-end object detection with transformers[M]//Computer Vision-ECCV 2020. Berlin: Springer International Publishing, 2020: 213-229.
    [16] 崔恩坤, 滕艳青, 刘佳伟. 立体视觉测量系统标定误差补偿[J]. 应用光学,2020,41(6):1174-1180. doi: 10.5768/JAO202041.0601006

    CUI Enkun, TENG Yanqing, LIU Jiawei. Calibration error compensation technique of stereoscopic vision measurement system[J]. Journal of Applied Optics,2020,41(6):1174-1180. doi: 10.5768/JAO202041.0601006
    [17] GEIGER A, LENZ P, URTASUN R. Are we ready for autonomous driving? The KITTI vision benchmark suite[C]//2012 IEEE Conference on Computer Vision and Pattern Recognition. Providence: IEEE, 2012: 3354-3361.
  • 加载中
图(5) / 表(3)
计量
  • 文章访问数:  132
  • HTML全文浏览量:  89
  • PDF下载量:  14
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-05-19
  • 修回日期:  2022-06-20
  • 网络出版日期:  2023-03-27
  • 刊出日期:  2023-07-15

目录

    /

    返回文章
    返回