留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

散斑自相关分辨率测量和修正

罗诗淇 刘京宙 陈炫辉 谢向生

罗诗淇, 刘京宙, 陈炫辉, 谢向生. 散斑自相关分辨率测量和修正[J]. 应用光学.
引用本文: 罗诗淇, 刘京宙, 陈炫辉, 谢向生. 散斑自相关分辨率测量和修正[J]. 应用光学.
LUO Shiqi, LIU Jingzhou, CHEN Xuanhui, XIE Xiangsheng. Speckle Autocorrelation resolution measurement and correction[J]. Journal of Applied Optics.
Citation: LUO Shiqi, LIU Jingzhou, CHEN Xuanhui, XIE Xiangsheng. Speckle Autocorrelation resolution measurement and correction[J]. Journal of Applied Optics.

散斑自相关分辨率测量和修正

基金项目: 国家自然科学基金(12074444);广东省基础与应用基础研究基金(2021A151501205);
详细信息
    作者简介:

    罗诗淇(19—),女, E-mail:19sqluo@stu.edu.cn

    通讯作者:

    谢向生(1982—),男,博士,副教授,主要从事散射成像和矢量光场共聚焦成像技术研究。E-mail:xxs@stu.edu.cn

  • 中图分类号: TN206

Speckle Autocorrelation resolution measurement and correction

  • 摘要: 散斑相关是许多基于散斑的光学测量和成像技术的基础,决定了光学系统的分辨率。当前散斑尺寸(颗粒度或分辨率)的理论描述不够精确,也缺乏实验验证。该文探究了散斑图样自相关尺寸的影响因素,与相同数值孔径物镜聚焦进行比对,揭示薄散射介质的“散射透镜”性质。通过散斑自相关和透镜聚焦尺寸的多组测量,结果表明,截趾函数会影响其分辨率,需要根据具体光路对阿贝判据做修正。对基于散斑的测量和成像技术具有一定的参考价值。
  • 图  1  波前调制实现薄散射介质后的聚焦

    Fig.  1  Wavefront modulation for focusing thin scattering medium

    图  2  散射片下散斑自相关曲线

    Fig.  2  Speckle autocorrelation curves through

    图  3  透镜焦斑和散射体散斑测量光路

    Fig.  3  Lens focal spot and scatterer speckle measurement optical path

    图  4  刀口仪捕获焦斑图像

    Fig.  4  Focal spot image captured by knife edge tester

    图  5  散斑自相关与透镜聚焦分辨率比对

    Fig.  5  Comparison of speckle autocorrelation and lens focusing .

    图  6  模型建立原理

    Fig.  6  Principle of Model Establishment

    图  7  CMOS不同位置散斑对应的等效数值孔径

    Fig.  7  Equivalent numerical aperture for speckles at different locations at the CMOS plane.

    表  1  通过透镜后的焦斑测量

    Table  1  Focal spot measurement after lens

    光阑直径
    d/mm
    实际焦斑
    直径$ y/\mu {\text{m}} $
    阿贝判据
    理论值/$ \mu {\text{m}} $
    误差/%
    1744.00841.6575.644
    1549.58747.2125.030
    1261.36458.9914.021
    1071.90170.6721.739
    889.25688.3401.037
    下载: 导出CSV

    表  2  通过散射介质后的散斑测量

    Table  2  Speckle measurement after scattering medium

    光阑直径
    d/mm
    散斑自相关
    测量值y/μm
    阿贝判据理
    论值/ μm
    误差/ %
    1745.07941.6578.214
    1550.40047.2126.753
    1261.31458.9913.938
    1072.68870.6722.853
    890.15888.3402.058
    下载: 导出CSV

    表  3  通过透镜后的焦斑测量(修正后)

    Table  3  Focal spot measurement after lens(Theoretical correction)

    光阑直径
    d/mm
    实际焦斑
    直径y/μm
    修正系数修正理论值/μm误差/%
    1744.0081.05744.3630.752
    1549.5871.04549.6421.138
    1261.3641.03161.1120.919
    1071.9011.02572.6260.999
    889.2561.02090.3080.650
    下载: 导出CSV

    表  4  通过散射介质后的散斑测量(修正后)

    Table  4  Speckle measurement after scattering medium(Theoretical correction)

    光阑直径
    d/mm
    散斑自相关
    测量值y/μm
    修正系数修正理论值/μm误差/%
    1745.0791.04444.3631.616
    1550.4001.05149.6421.527
    1261.3141.03561.1120.325
    1072.6881.02772.6260.088
    890.1581.02290.3080.164
    下载: 导出CSV
  • [1] FREUND I. Looking through walls and around corners[J]. Physica A,1990,168:49-65. doi: 10.1016/0378-4371(90)90357-X
    [2] GU M, GAN X , DENG X. Microscopic imaging through turbid media[M]. 缺出版地: Springer-Verlag Berlin Heidelberg: Springer Berlin Heidelberg, 2015.
    [3] MOSK A P, LAGENDIJK A, LEROSEY G, et al. Controlling waves in space and time for imaging and focusing in complex media[J]. Nature Photonics,2012,6:283-292. doi: 10.1038/nphoton.2012.88
    [4] KATZ O, SMALL E, SILBERBERG Y. Looking around corners and through thin turbid layers in real time with scattered incoherent light[J]. Nature Photonics,2012,6:549-553. doi: 10.1038/nphoton.2012.150
    [5] VELLEKOOP I M, MOSK A P. Focusing coherent light through opaque strongly scattering media[J]. Optics Letters,2007,32(16):2309-2311. doi: 10.1364/OL.32.002309
    [6] YAQOOB Z, PSALTIS D, FELD M, et al. Optical phase conjugation for turbidity suppression in biological samples[J]. Nature Photonics,2008,2:110-115. doi: 10.1038/nphoton.2007.297
    [7] HSIEH C L, PU Y, GRANGE R, et al. Imaging through turbid layers by scanning the phase conjugated second harmonic radiation from a nanoparticle[J]. Optical Express,2010,18:20723-20731. doi: 10.1364/OE.18.020723
    [8] WANG Y M, JUDKEWITZ B, DIMARZIO C A, et al. Deep-tissue focal fluorescence imaging with digitally time-reversed ultrasound-encoded light[J]. Nature Communication,2012,3:928. doi: 10.1038/ncomms1925
    [9] POPOFF S, LEROSEY G, FINK M, et al. Image transmission through an opaque material[J]. Nature Communication,2010,1:81-86. doi: 10.1038/ncomms1078
    [10] POPOFF S M, LROSEY G, CARMINATI R, et al. Measuring the transmission matrix in optics: an approach to the study and control of light propagation in disordered media[J]. Physical Review,2010,104:100601-100604.
    [11] CHOI Y, YOON C, KIM M, et al. Scanner-free and wide-field endoscopic imaging by using a single multimode optical fiber[J]. Physical Review,2012,109:203901-203905.
    [12] BERTOLOTTI J, PUTTEN E G, BLUM C, et al. Non-invasive imaging through opaque scattering layers[J]. Nature,2012,491:232-234. doi: 10.1038/nature11578
    [13] KATZ O, HEIDMANN P, FINK M, et al. Non-invasive single-shot imaging through scattering layers and around corners via speckle correlations[J]. Nature Photonics,2014,8:784-790. doi: 10.1038/nphoton.2014.189
    [14] WU T, KATZ O, SHAO X, et al. Single-shot diffraction-limited imaging through scattering layers via bispectrum analysis[J]. Optical Letter,2016,41(21):5003-5006. doi: 10.1364/OL.41.005003
    [15] LI L, LI Q, SUN S, et al. Imaging through scattering layers exceeding memory effect range with spatial-correlation-achieved point-spread-function[J]. Optical. Letter,2018,43(8):1670-1673. doi: 10.1364/OL.43.001670
    [16] XU X, XIE X, THENDIYAMMAL A, et al. Imaging of objects through a thin scattering layer using a spectrally and spatially separated reference[J]. Optical Express,2018,26(12):15073-15083. doi: 10.1364/OE.26.015073
    [17] XIE X, ZHUANG H, ZHOU J, et al. Extended depth-resolved imaging through a thin scattering medium with PSF manipulation[J]. Scientific Reports,2018,8:4585-4594. doi: 10.1038/s41598-018-22966-7
    [18] SAUNDERS C, MURRAY B J, GOYAL V K. Computational periscopy with an ordinary digital camera[J]. Nature,2019,565(7740):472-475. doi: 10.1038/s41586-018-0868-6
    [19] WANG X, JINX, LI J. Blind position detection for large field-of-view scattering imaging[J]. Photonics Research,2020,8(6):920-928. doi: 10.1364/PRJ.388522
    [20] LI W, LIU J, HE S, et al. Multitarget imaging through scattering media beyond the 3D optical memory effect[J]. Optical Letter,2020,45(10):2692-2695. doi: 10.1364/OL.388552
    [21] YANG W, LI G, SITU G. Imaging through scattering media with the auxiliary of a known reference object[J]. Scientific Reports,2018,8:9614-9622. doi: 10.1038/s41598-018-27754-x
    [22] NEWMAN J A, QIAOEN L, WEBB K J. Imaging hidden objects with spatial speckle intensity correlations over object position[J]. Physical Review,2016,116(7):073902.1-073902.6.
    [23] EDREI E, SCARCELLI G. Optical imaging through dynamic turbid media using the Fourier-domain shower-curtain effect[J]. Optica,2016,3(1):71-74. doi: 10.1364/OPTICA.3.000071
    [24] XIE X S, QI Z H, ZHOU J Y, et al. Non-invasive optical imaging using the extension of the Fourier–domain shower–curtain effect[J]. Optical Letter,2021,46(1):98-101. doi: 10.1364/OL.415181
    [25] 谢向生, 刘忆琨, 周建英, 等. 散斑相关成像: 从点扩展函数到光场全要素(特邀综述)[J]. 光学学报,2020,40(1):0111004.
    [26] HE H X, XIE X S, LIU Y K, et al. Exploiting the point spread function for optical imaging through a scattering medium based on deconvolution method[J]. Journal of Innovative Optical Health Sciences,2019,12(8):1930005.
    [27] 张莉, 刘元硕, 荣振宇, 等. 利用激光散斑测量透明材料的折射率[J]. 物理实验,2021,41(6):37-40. doi: 10.19655/j.cnki.1005-4642.2021.06.005
    [28] ZHANG Li, LIU Yuanshuo, RONG Zhengyu, et al. The refractive index of transparent materials was measured by laser speckle[J]. Physical experiment,2021,41(6):37-40.
    [29] 王志军, 于之靖, 马凯, 等. 数字散斑亚像素小角位移测量的曲面拟合法[J]. 应用光学,2017,38(2):256-263.
    [30] WANG Zhijun, YU Zhijing, MA Kai, et al. Surface fitting method for digital speckle subpixel measurement of small angular displacement[J]. Journal of Applied Optics,2017,38(2):256-263.
    [31] 韩刚, 许亚娥, 沈阳, 等. 散斑技术在激光寻的制导武器仿真系统中的应用[J]. 应用光学,2015,36(3):356-361. doi: 10.5768/JAO201536.0301004

    HAN Gang, XU Yae, SHEN Yang, et al. Application of speckle technique in laser homing guided weapon simulation system[J]. Journal of Applied Optics,2015,36(3):356-361. doi: 10.5768/JAO201536.0301004
    [32] 吴凡, 吴思进, 李伟仙, 等. 应用数字散斑投影测量纸页厚度[J]. 应用光学,2019,40(5):847-852.
    [33] WU Fan, WU Sijin, LI Weixian, et al. The paper thickness was measured by digital speckle projection[J]. Journal of Applied Optics,2019,40(5):847-852. doi: 10.5768/JAO201940.0503002
    [34] GOODMAN J W. Statistical properties of laser speckle patterns. in: dainty, J. C. (eds) laser speckle and related phenomena. topics in applied physics[M]. Heidelberg: Springer, Berlin, 1975, 9: 9-75.
    [35] XIE X S, ZHUANG H C, HE H X, et al. Extended depth-resolved imaging through a thin scattering medium with PSF manipulation[J]. Scientific. Reports,2018,8:4585. doi: 10.1038/s41598-018-22966-7
    [36] NOVOTNY L, HECHT B. The Principle of Nano Optics, (Cambridge University, 2006). 信息不全, 文献类型不明
    [37] RICHARDS B, WOLF E. Electromagnetic diffraction in optical systems II. structure of the image field in an aplanatic system[J]. Proceedings of the Royal Society of London. Series A,1959,253:358-379.
    [38] VELLEKOOP I M, MOSK A P. Focusing coherent light through opaque strongly scattering media [J]. Optics Letters. 2007, 32(16): 2309–2311.
    [39] 谢向生, 魏洁, 周建英, 等. 散射透镜的成像原理及应用[J]. 物理实验,2021,41(8):1005-4642.

    XIE Xiangsheng, WEI Jie, ZHOU Jianying, et al. Imaging principle and application of scattering lens[J]. Physical experiment,2021,41(8):1005-4642.
    [40] GOODMAN J W. 光学中的散斑现象[M]. 曹其智, 陈家璧, 译. 北京: 科学出版社, 2009.

    GOODMAN J W. Speckle phenomenon in optics[M]. CAO Qizhi, CHEN Jiabi, translated. Beijing: Science Press, 2009.
    [41] FREUND I. Looking through walls and around corners [J]. Physica A: Statistical Mechanics and its Applications. 1990, 168: 49–65.
    [42] YANG L X, XIE X S, ZHOU J Y, et al. Minimized spot of annular radially polarized focusing beam[J]. Optical. Letter,2013,38:1331-1333. doi: 10.1364/OL.38.001331
    [43] HU Y W, FU S H, LI Z, et al. Focusing optical waves with a rotationally symmetric sharp-edge aperture[J]. Optics Communications,2018,413:136-140. doi: 10.1016/j.optcom.2017.12.043
  • 加载中
图(7) / 表(4)
计量
  • 文章访问数:  112
  • HTML全文浏览量:  59
  • PDF下载量:  37
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-04-15
  • 修回日期:  2022-06-28
  • 网络出版日期:  2022-07-05

目录

    /

    返回文章
    返回