Speckle Autocorrelation resolution measurement and correction
-
摘要: 散斑相关是许多基于散斑的光学测量和成像技术的基础,决定了光学系统的分辨率。当前散斑尺寸(颗粒度或分辨率)的理论描述不够精确,也缺乏实验验证。该文探究了散斑图样自相关尺寸的影响因素,与相同数值孔径物镜聚焦进行比对,揭示薄散射介质的“散射透镜”性质。通过散斑自相关和透镜聚焦尺寸的多组测量,结果表明,截趾函数会影响其分辨率,需要根据具体光路对阿贝判据做修正。对基于散斑的测量和成像技术具有一定的参考价值。Abstract: Speckle correlation is the basis of speckle-based optical measurements and imaging recovery technologies, which determines the resolution of the opitcal system. At present, the theoretical description of speckle size (grain or resolution) is not accurate enough, and lacks of experimental verification. This paper explores the influencing factors of speckle pattern autocorrelation size, and compares it with the same numerical aperture objective focusing to reveal the 'scattering lens' properties of thin scattering medium. Through multiple sets of measurements of speckle autocorrelation and lens focusing size, the results show that the apodization function will affect their resolution, and the Abbe criterion needs to be corrected according to the specific optical path. This paper has a certain reference value for speckle-based measurement and imaging technology.
-
Key words:
- speckle correlation /
- Abbe Criterion /
- scattering lens /
- point spread function
-
表 1 通过透镜后的焦斑测量
Table 1 Focal spot measurement after lens
光阑直径
d/mm实际焦斑
直径$ y/\mu {\text{m}} $阿贝判据
理论值/$ \mu {\text{m}} $误差/% 17 44.008 41.657 5.644 15 49.587 47.212 5.030 12 61.364 58.991 4.021 10 71.901 70.672 1.739 8 89.256 88.340 1.037 表 2 通过散射介质后的散斑测量
Table 2 Speckle measurement after scattering medium
光阑直径
d/mm散斑自相关
测量值y/μm阿贝判据理
论值/ μm误差/ % 17 45.079 41.657 8.214 15 50.400 47.212 6.753 12 61.314 58.991 3.938 10 72.688 70.672 2.853 8 90.158 88.340 2.058 表 3 通过透镜后的焦斑测量(修正后)
Table 3 Focal spot measurement after lens(Theoretical correction)
光阑直径
d/mm实际焦斑
直径y/μm修正系数 修正理论值/μm 误差/% 17 44.008 1.057 44.363 0.752 15 49.587 1.045 49.642 1.138 12 61.364 1.031 61.112 0.919 10 71.901 1.025 72.626 0.999 8 89.256 1.020 90.308 0.650 表 4 通过散射介质后的散斑测量(修正后)
Table 4 Speckle measurement after scattering medium(Theoretical correction)
光阑直径
d/mm散斑自相关
测量值y/μm修正系数 修正理论值/μm 误差/% 17 45.079 1.044 44.363 1.616 15 50.400 1.051 49.642 1.527 12 61.314 1.035 61.112 0.325 10 72.688 1.027 72.626 0.088 8 90.158 1.022 90.308 0.164 -
[1] FREUND I. Looking through walls and around corners[J]. Physica A,1990,168:49-65. doi: 10.1016/0378-4371(90)90357-X [2] GU M, GAN X , DENG X. Microscopic imaging through turbid media[M]. 缺出版地: Springer-Verlag Berlin Heidelberg: Springer Berlin Heidelberg, 2015. [3] MOSK A P, LAGENDIJK A, LEROSEY G, et al. Controlling waves in space and time for imaging and focusing in complex media[J]. Nature Photonics,2012,6:283-292. doi: 10.1038/nphoton.2012.88 [4] KATZ O, SMALL E, SILBERBERG Y. Looking around corners and through thin turbid layers in real time with scattered incoherent light[J]. Nature Photonics,2012,6:549-553. doi: 10.1038/nphoton.2012.150 [5] VELLEKOOP I M, MOSK A P. Focusing coherent light through opaque strongly scattering media[J]. Optics Letters,2007,32(16):2309-2311. doi: 10.1364/OL.32.002309 [6] YAQOOB Z, PSALTIS D, FELD M, et al. Optical phase conjugation for turbidity suppression in biological samples[J]. Nature Photonics,2008,2:110-115. doi: 10.1038/nphoton.2007.297 [7] HSIEH C L, PU Y, GRANGE R, et al. Imaging through turbid layers by scanning the phase conjugated second harmonic radiation from a nanoparticle[J]. Optical Express,2010,18:20723-20731. doi: 10.1364/OE.18.020723 [8] WANG Y M, JUDKEWITZ B, DIMARZIO C A, et al. Deep-tissue focal fluorescence imaging with digitally time-reversed ultrasound-encoded light[J]. Nature Communication,2012,3:928. doi: 10.1038/ncomms1925 [9] POPOFF S, LEROSEY G, FINK M, et al. Image transmission through an opaque material[J]. Nature Communication,2010,1:81-86. doi: 10.1038/ncomms1078 [10] POPOFF S M, LROSEY G, CARMINATI R, et al. Measuring the transmission matrix in optics: an approach to the study and control of light propagation in disordered media[J]. Physical Review,2010,104:100601-100604. [11] CHOI Y, YOON C, KIM M, et al. Scanner-free and wide-field endoscopic imaging by using a single multimode optical fiber[J]. Physical Review,2012,109:203901-203905. [12] BERTOLOTTI J, PUTTEN E G, BLUM C, et al. Non-invasive imaging through opaque scattering layers[J]. Nature,2012,491:232-234. doi: 10.1038/nature11578 [13] KATZ O, HEIDMANN P, FINK M, et al. Non-invasive single-shot imaging through scattering layers and around corners via speckle correlations[J]. Nature Photonics,2014,8:784-790. doi: 10.1038/nphoton.2014.189 [14] WU T, KATZ O, SHAO X, et al. Single-shot diffraction-limited imaging through scattering layers via bispectrum analysis[J]. Optical Letter,2016,41(21):5003-5006. doi: 10.1364/OL.41.005003 [15] LI L, LI Q, SUN S, et al. Imaging through scattering layers exceeding memory effect range with spatial-correlation-achieved point-spread-function[J]. Optical. Letter,2018,43(8):1670-1673. doi: 10.1364/OL.43.001670 [16] XU X, XIE X, THENDIYAMMAL A, et al. Imaging of objects through a thin scattering layer using a spectrally and spatially separated reference[J]. Optical Express,2018,26(12):15073-15083. doi: 10.1364/OE.26.015073 [17] XIE X, ZHUANG H, ZHOU J, et al. Extended depth-resolved imaging through a thin scattering medium with PSF manipulation[J]. Scientific Reports,2018,8:4585-4594. doi: 10.1038/s41598-018-22966-7 [18] SAUNDERS C, MURRAY B J, GOYAL V K. Computational periscopy with an ordinary digital camera[J]. Nature,2019,565(7740):472-475. doi: 10.1038/s41586-018-0868-6 [19] WANG X, JINX, LI J. Blind position detection for large field-of-view scattering imaging[J]. Photonics Research,2020,8(6):920-928. doi: 10.1364/PRJ.388522 [20] LI W, LIU J, HE S, et al. Multitarget imaging through scattering media beyond the 3D optical memory effect[J]. Optical Letter,2020,45(10):2692-2695. doi: 10.1364/OL.388552 [21] YANG W, LI G, SITU G. Imaging through scattering media with the auxiliary of a known reference object[J]. Scientific Reports,2018,8:9614-9622. doi: 10.1038/s41598-018-27754-x [22] NEWMAN J A, QIAOEN L, WEBB K J. Imaging hidden objects with spatial speckle intensity correlations over object position[J]. Physical Review,2016,116(7):073902.1-073902.6. [23] EDREI E, SCARCELLI G. Optical imaging through dynamic turbid media using the Fourier-domain shower-curtain effect[J]. Optica,2016,3(1):71-74. doi: 10.1364/OPTICA.3.000071 [24] XIE X S, QI Z H, ZHOU J Y, et al. Non-invasive optical imaging using the extension of the Fourier–domain shower–curtain effect[J]. Optical Letter,2021,46(1):98-101. doi: 10.1364/OL.415181 [25] 谢向生, 刘忆琨, 周建英, 等. 散斑相关成像: 从点扩展函数到光场全要素(特邀综述)[J]. 光学学报,2020,40(1):0111004. [26] HE H X, XIE X S, LIU Y K, et al. Exploiting the point spread function for optical imaging through a scattering medium based on deconvolution method[J]. Journal of Innovative Optical Health Sciences,2019,12(8):1930005. [27] 张莉, 刘元硕, 荣振宇, 等. 利用激光散斑测量透明材料的折射率[J]. 物理实验,2021,41(6):37-40. doi: 10.19655/j.cnki.1005-4642.2021.06.005 [28] ZHANG Li, LIU Yuanshuo, RONG Zhengyu, et al. The refractive index of transparent materials was measured by laser speckle[J]. Physical experiment,2021,41(6):37-40. [29] 王志军, 于之靖, 马凯, 等. 数字散斑亚像素小角位移测量的曲面拟合法[J]. 应用光学,2017,38(2):256-263. [30] WANG Zhijun, YU Zhijing, MA Kai, et al. Surface fitting method for digital speckle subpixel measurement of small angular displacement[J]. Journal of Applied Optics,2017,38(2):256-263. [31] 韩刚, 许亚娥, 沈阳, 等. 散斑技术在激光寻的制导武器仿真系统中的应用[J]. 应用光学,2015,36(3):356-361. doi: 10.5768/JAO201536.0301004HAN Gang, XU Yae, SHEN Yang, et al. Application of speckle technique in laser homing guided weapon simulation system[J]. Journal of Applied Optics,2015,36(3):356-361. doi: 10.5768/JAO201536.0301004 [32] 吴凡, 吴思进, 李伟仙, 等. 应用数字散斑投影测量纸页厚度[J]. 应用光学,2019,40(5):847-852. [33] WU Fan, WU Sijin, LI Weixian, et al. The paper thickness was measured by digital speckle projection[J]. Journal of Applied Optics,2019,40(5):847-852. doi: 10.5768/JAO201940.0503002 [34] GOODMAN J W. Statistical properties of laser speckle patterns. in: dainty, J. C. (eds) laser speckle and related phenomena. topics in applied physics[M]. Heidelberg: Springer, Berlin, 1975, 9: 9-75. [35] XIE X S, ZHUANG H C, HE H X, et al. Extended depth-resolved imaging through a thin scattering medium with PSF manipulation[J]. Scientific. Reports,2018,8:4585. doi: 10.1038/s41598-018-22966-7 [36] NOVOTNY L, HECHT B. The Principle of Nano Optics, (Cambridge University, 2006). 信息不全, 文献类型不明 [37] RICHARDS B, WOLF E. Electromagnetic diffraction in optical systems II. structure of the image field in an aplanatic system[J]. Proceedings of the Royal Society of London. Series A,1959,253:358-379. [38] VELLEKOOP I M, MOSK A P. Focusing coherent light through opaque strongly scattering media [J]. Optics Letters. 2007, 32(16): 2309–2311. [39] 谢向生, 魏洁, 周建英, 等. 散射透镜的成像原理及应用[J]. 物理实验,2021,41(8):1005-4642.XIE Xiangsheng, WEI Jie, ZHOU Jianying, et al. Imaging principle and application of scattering lens[J]. Physical experiment,2021,41(8):1005-4642. [40] GOODMAN J W. 光学中的散斑现象[M]. 曹其智, 陈家璧, 译. 北京: 科学出版社, 2009.GOODMAN J W. Speckle phenomenon in optics[M]. CAO Qizhi, CHEN Jiabi, translated. Beijing: Science Press, 2009. [41] FREUND I. Looking through walls and around corners [J]. Physica A: Statistical Mechanics and its Applications. 1990, 168: 49–65. [42] YANG L X, XIE X S, ZHOU J Y, et al. Minimized spot of annular radially polarized focusing beam[J]. Optical. Letter,2013,38:1331-1333. doi: 10.1364/OL.38.001331 [43] HU Y W, FU S H, LI Z, et al. Focusing optical waves with a rotationally symmetric sharp-edge aperture[J]. Optics Communications,2018,413:136-140. doi: 10.1016/j.optcom.2017.12.043 -