[1] |
VAHALA K J. Optical microcavities[J]. Nature,2003,424(6950):839-846. doi: 10.1038/nature01939
|
[2] |
高宇炜, 方守龙, 武腾飞, 等. 双飞秒激光频率梳光谱测量技术研究进展[J]. 应用光学,2021,42(1):157-175. doi: 10.5768/JAO202142.0107003GAO Yuwei, FANG Shoulong, WU Tengfei, et al. Research progress of double femtosecond laser freuency comb spectroscopy measurement technology[J]. Journal of Applied Optics,2021,42(1):157-175. doi: 10.5768/JAO202142.0107003
|
[3] |
王先华, 陈烽, 杨青, 等. 飞秒激光在透明介质中诱导光学微腔的实验研究[J]. 应用光学,2007,28(2):191-194. doi: 10.3969/j.issn.1002-2082.2007.02.017WANG Xianhua, CHEN Feng, YANG Qing, et al. Experiment research on femtosecond-laser-induced optical microcavity in transparent materials[J]. Journal of Applied Optics,2007,28(2):191-194. doi: 10.3969/j.issn.1002-2082.2007.02.017
|
[4] |
罗强, 薄方, 孔勇发, 等. 铌酸锂薄膜微腔激光器研究进展[J]. 红外与激光工程,2021,50(11):20210546-1-5.LUO Qiang, BO Fang, KONG Yongfa, et al. Research progresses of microcavity lasers based on lithium niobate on insulator[J]. Infrared and Laser Engineering,2021,50(11):20210546-1-5.
|
[5] |
黄水泉, 高尚, 黄传真, 等. 脆性材料磨粒加工的纳米尺度去除机理 氟化镁晶体微腔的克尔光频梳产生研究[J]. 金刚石与磨料磨具工程,2022,42(3):257-267. doi: 10.3788/IRLA20210481HUANG Shuiquan, GAO Shang, HUANG Chuanzhen, et al. Nanoscale removal mechanisms in abrasive machining of brittle solids[J]. Diamond & Abrasives Engineering,2022,42(3):257-267. doi: 10.3788/IRLA20210481
|
[6] |
曹启韬, 唐水晶, 陈豪敬, 等. 超高品质因子片上微腔光子学研究进展[J]. 科学通报,2020,65(27):3029-3042.CAO Qitao, TANG Shuijing, CHEN Haojing, et al. Research advances of ultrahigh-Q on-chip microcavity photonics[J]. Chinese Science Bulletin,2020,65(27):3029-3042.
|
[7] |
SOLTANI M, ILCHENKO V, MATSKO A, et al. Ultrahigh Q whispering gallery mode electro-optic resonators on a silicon photonic chip[J]. Optics Letters,2016,41(18):4375-4378.
|
[8] |
潘毓. 超高品质因数回音壁模式谐振器研究[D]. 杭州: 浙江大学, 2017.PAN Yu, Research on ultra-high Q whispering gallery mode resonators[D]. Hangzhou: Zhejiang University, 2017.
|
[9] |
沈远. 氟化镁微腔光频梳产生研究[D]. 合肥: 中国科学技术大学, 2021.SHEN Yuan. Research on optical frequency comb generation in magnesium fluoride micro-resonator[D]. Hefei: University of Science and Technology of China, 2021.
|
[10] |
卢晓云. 高Q之氟化钙盘腔的加工与耦合测试[D]. 太原: 中北大学, 2016.LU Xiaoyun. The fabrication and coupling test of high Q value calcium fluoride disk[D]. Taiyuan: North University of China, 2016.
|
[11] |
杨旭, 回音壁模式光学微腔的拉曼调制及其应用[D]. 北京: 清华大学, 2016.YANG Xu. Raman modulation of whispering Gallery mode microresonators and its application[D]. Beijing: Tsinghua University, 2016.
|
[12] |
LIN G P, RÉMI H, AURÉLIEN C, et al. Dependence of quality factor on surface roughness in crystalline whispering-gallery mode resonators[J]. Optical Letters, 2018, 43(3): 495-498.
|
[13] |
LU X, XUE C, WANG Y, et al. Fabrication and test of millimetersize CaF2 disk resonator[J]. Infrared and Laser Engineering,2015,44(10):3049-3054.
|
[14] |
GRUDININ I S, ILCHENKO V S, MALEKI L. Ultrahigh optical Q factors of crystalline resonators in the linear regime[J]. Physical Review A,2006,74(6):063806.
|
[15] |
SAVCHENKOV A A, MATSKO A B, ILCHENKO V S, et al. Optical resonators with ten million finesse[J]. Optics Express,2007,15(11):6768-6773. doi: 10.1364/OE.15.006768
|
[16] |
VERNOOY D, ILCHENKO V S, MABUCHI H, et al. High-Q measurements of fused-silica microspheres in the near infrared[J]. Optics Letters,1998,23(4):247-249. doi: 10.1364/OL.23.000247
|
[17] |
KIPPENBERG T, SPILLANE S, VAHALA K. Demonstration of ultra-high-Q small mode volume toroid microcavities on a chip[J]. Applied Physics Letters,2004,85(25):6113-6115. doi: 10.1063/1.1833556
|