留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于双尺度4分离层优化的石墨烯太赫兹宽带吸波结构

檀立刚 骆明伟 李捷

檀立刚, 骆明伟, 李捷. 基于双尺度4分离层优化的石墨烯太赫兹宽带吸波结构[J]. 应用光学, 2023, 44(1): 6-16. doi: 10.5768/JAO202344.0101002
引用本文: 檀立刚, 骆明伟, 李捷. 基于双尺度4分离层优化的石墨烯太赫兹宽带吸波结构[J]. 应用光学, 2023, 44(1): 6-16. doi: 10.5768/JAO202344.0101002
TAN Ligang, LUO Mingwei, LI Jie. Wide-band terahertz absorbing structure with graphene based on dual-scale four separation layers optimization[J]. Journal of Applied Optics, 2023, 44(1): 6-16. doi: 10.5768/JAO202344.0101002
Citation: TAN Ligang, LUO Mingwei, LI Jie. Wide-band terahertz absorbing structure with graphene based on dual-scale four separation layers optimization[J]. Journal of Applied Optics, 2023, 44(1): 6-16. doi: 10.5768/JAO202344.0101002

基于双尺度4分离层优化的石墨烯太赫兹宽带吸波结构

doi: 10.5768/JAO202344.0101002
基金项目: 某纵向预研项目(2019408XXXX)
详细信息
    作者简介:

    檀立刚(1983—),男,博士,高级工程师,主要从事红外探测与对抗、太赫兹雷达与对抗、光学隐身超材料等研究。E-mail:tlgbb@163.com

    通讯作者:

    骆明伟(1980—),男,硕士,高级工程师,主要从事电子对抗、雷达及对抗、光电对抗等研究。E-mail:30233441@qq.com

  • 中图分类号: TN202; O43

Wide-band terahertz absorbing structure with graphene based on dual-scale four separation layers optimization

  • 摘要: 为实现对未来远程太赫兹雷达的高效对抗与隐身,针对典型太赫兹雷达工作频率设计了一种石墨烯太赫兹宽带吸波结构。宽带吸波结构以表层金属层/石墨烯层/介质层/底层金属层为基本吸波结构单元,利用遗传算法对双尺度基本吸波结构单元进行4分离层优化设计,确定宽带吸波结构的各层结构参数。仿真结果表明:宽带吸波结构在0.138 THz~2 THz频率范围内吸收效率优于80%,在0.157 THz~2 THz频率范围内吸收效率优于97.46%,典型太赫兹雷达工作频率处吸收效率均优于92.27%,满足太赫兹雷达对抗与隐身要求。
  • 图  1  金属/石墨烯/介质/金属4层基本吸波结构单元示意图

    Fig.  1  Schematic diagram of four layers basic absorbing unit of metal/graphene/dielectric/metal

    图  2  等效谐振电路示意图

    Fig.  2  Schematic diagram of equivalent resonance circuit

    图  3  基于遗传算法多分离层结构优化流程

    Fig.  3  Flow chart of multi-layer structure optimization by genetic algorithm

    图  4  双尺度4分离层结构示意图

    Fig.  4  Schematic diagram of dual scale and four separation layers structure

    图  5  单一尺度4分离层结构吸收效率仿真

    Fig.  5  Absorption efficiency simulation of single scale and four separation layers structure

    图  6  双尺度金属层/介质层/金属层4分离层结构吸收率仿真结果

    Fig.  6  Absorption efficiency simulation of dual scale and metal/dielectric/metal four separation layers structure

    图  7  双尺度金属/石墨烯/介质/金属4分离层结构吸收率仿真

    Fig.  7  Absorption efficiency simulation of dual scale and metal/graphene/dielectric/metal four separation layers structure

    图  8  结构整体吸收率

    Fig.  8  Total absorption efficiency of structure

    图  9  不同入射角度下尺度1的4分离层结构吸收率仿真

    Fig.  9  Absorption efficiency simulation of four separation layers structure in scale 1 at different incident angles

    图  10  不同入射角度下尺度2的4分离层结构吸收率仿真

    Fig.  10  Absorption efficiency simulation of four separation layers structure in scale 2 at different incident angles

    图  11  不同入射角度下双尺度的4分离层结构吸收率仿真

    Fig.  11  Absorption efficiency simulation of dual scale and four separation layers structure at different incident angles

    图  12  加工误差正偏10%条件下尺度1和尺度2的4分离层结构吸收率仿真

    Fig.  12  Absorption efficiency simulation of scale 1 and scale 2 four separation layers structure at +10% machining errors

    图  13  加工误差正偏10%条件下双尺度4分离层结构吸收率仿真

    Fig.  13  Absorption efficiency simulation of dual scale four separation layers structure at +10% machining errors

    图  14  加工误差负偏10%条件下尺度1和尺度2的4分离层结构吸收率仿真

    Fig.  14  Absorption efficiency simulation of scale 1 and scale 2 four separation layers structure at −10% machining errors

    图  15  加工误差负偏10%条件下双尺度4分离层结构吸收率仿真

    Fig.  15  Absorption efficiency simulation of dual scale four separation layers structure at −10% machining errors

    表  1  双尺度4分离层结构各层参数

    Table  1  Parameters of each layer of dual scale and four separation layers structure

    名称表面金属
    结构尺度/µm
    介质层
    厚度/µm
    基本层
    结构
    表面金属/
    石墨烯厚度/nm
    尺度2第1层2421M/G/I15/1
    尺度2第2层1553M/G/I15/1
    尺度2第3层6.447M/G/I15/1
    尺度2第4层8.825M/G/I15/1
    尺度1第1层449107M/G/I15/1
    尺度1第2层246141M/G/I15/1
    尺度1第3层221140M/G/I15/1
    尺度1第4层170128M/G/I/M15/1/2 µm
    下载: 导出CSV

    表  2  不同入射角度下单尺度和双尺度4分离层结构吸收率

    Table  2  Absorption efficiency of single scale and dual scale four separation layers structure at different incident angles

    入射角度/(°)尺度1吸收率优于80%频率
    范围/THz
    尺度2吸收率优于80%
    频率范围/THz
    双尺度吸收率优于80%
    频率范围/THz
    0[0.195~0.936],[1.297~2.0][0.594~2.0][0.138~2.0]
    10[0.195~0.936],[1.316~2.0][0.594~2.0][0.138~2.0]
    20[0.195~0.993],[1.373~2.0][0.613~2.0][0.138~2.0]
    30[0.214~1.069],[1.487~2.0][0.651~2.0][0.157~2.0]
    40[0.233~1.202],[1.677~2.0][0.727~2.0][0.176~2.0]
    50[0.290~1.430],2.0(频点)[0.898~2.0][0.233~2.0]
    60[0.404~1.278],[1.506~1.791][1.278~2.0][0.309~2.0]
    下载: 导出CSV

    表  3  不同加工误差下单尺度和双尺度4分离层结构吸收率

    Table  3  Absorption efficiency of single scale and dual scale four separation layers structure at different machining errors

    加工误差/%尺度1吸收率优于80%频率
    范围/THz
    尺度2吸收率优于80%
    频率范围/THz
    双尺度吸收率优于80%
    频率范围/THz
    0[0.195~0.917],[1.297~2.0][0.594~2.0][0.138~2.0]
    +10[0.176~0.741],[1.164~1.848][0.518~1.905][0.119~2.0]
    −10[0.176~0.841],[1.164~1.848][0.727~2.0][0.138~2.0]
    下载: 导出CSV
  • [1] 吕治辉, 张栋文, 赵增秀, 等. 太赫兹雷达技术研究[J]. 国防科技,2015,36(2):23-26.

    LYU Zhihui, ZHANG Dongwen, ZHAO Zengxiu, et al. Research of terahertz radar technology[J]. National Defense Science and Technology,2015,36(2):23-26.
    [2] 董坤. 太赫兹雷达的特点及其应用[J]. 科技视界,2021(3):58-59.

    DONG Kun. Characteristics and applications of terahertz radar[J]. Science & Technology Vision,2021(3):58-59.
    [3] 周智伟. 太赫兹技术发展综述[J]. 军民两用技术与产品,2020(1):40-44.

    HOU Zhiwei. Overview of the development of terahertz technology[J]. Dual Use Technologies & Products,2020(1):40-44.
    [4] 武帅, 屈浩, 涂昊, 等. 太赫兹技术应用进展[J]. 电子技术应用,2019,45(7):3-18.

    WU Shuai, QU Hao, TU Hao, et al. Progresses towards the application of terahertz technologies[J]. Terahertz Technology and Its Application,2019,45(7):3-18.
    [5] 张剑, 杨悦. 太赫兹技术在未来陆海空天的军事应用[J]. 舰船电子工程,2020,40(8):9-11.

    ZHANG Jian, YANG Yue. Military application of terahertz technology in the future ground-air integrative battlefield[J]. Ship Electronic Engineering,2020,40(8):9-11.
    [6] 延凯悦, 冯毅, 马静艳, 等. 太赫兹应用分析和展望[J]. 邮电设计技术,2020(4):6-10. doi: 10.12045/j.issn.1007-3043.2020.04.002

    YAN Yuekai, FENG Yi, MA Jingyan, et al. Analysis and prospect of terahertz technology application[J]. Post and Telecommunications Design Technology,2020(4):6-10. doi: 10.12045/j.issn.1007-3043.2020.04.002
    [7] 司黎明, 徐浩阳, 董琳, 等. 2020年太赫兹科学与技术热点回眸[J]. 科技导报,2021,39(1):201-209. doi: 10.3981/j.issn.1000-7857.2021.01.017

    SI Liming, XU Haoyang, DONG Lin, et al. Hot spots looking back of terahertz science and technology in 2020[J]. Technology Review,2021,39(1):201-209. doi: 10.3981/j.issn.1000-7857.2021.01.017
    [8] TAO H, BINGHAM C M, PILON D, et al. A dual band terahertz metamaterial absorber[J]. Journal of Physics D-Applied Physics,2010,43(22):225102. doi: 10.1088/0022-3727/43/22/225102
    [9] WEN Q Y, ZHANG H W, XIE Y S, et al. Dual band terahertz metamaterial absorber: design, fabrication, and characterization[J]. Applied Physics Letters,2009,95(24):241111. doi: 10.1063/1.3276072
    [10] MA Y, CHEN Q, GRANT J, et al. A terahertz polarization insensitive dual band metamaterial absorber[J]. Optics Letters,2011,36(6):945-947. doi: 10.1364/OL.36.000945
    [11] SHEN X P, CUI T J, ZHAO J M, et al. Polarization-independent wide-angle triple-band metamaterial absorber[J]. Optics Express,2011,19(10):9401-9407. doi: 10.1364/OE.19.009401
    [12] SHEN X P, YANG Y, ZANG Y Z, et al. Triple-band terahertz metamaterial absorber: design, experiment, and physical interpretation[J]. Applied Physics Letters,2012,101(15):154102. doi: 10.1063/1.4757879
    [13] 邹涛波. 基于超材料的太赫兹吸波体理论与工艺研究[D]. 桂林: 桂林电子科技大学, 2015.

    ZOU Taobo. Research on the theory and process of metamaterial terahertz absorber[D]. Guilin: Guilin University of Electronic Technology, 2015.
    [14] CUI Y X, XU J, FUNG K H, et al. A thin film broadband absorber based on multi-sized nanoantennas[J]. Applied Physics Letters,2011,99(25):253101. doi: 10.1063/1.3672002
    [15] CUI Y X, FUNG K H, XU J, et al. Ultrabroadband light absorption by a sawtooth anisotropic metamaterial slab[J]. Nano Letters,2012,12(3):1443-1447. doi: 10.1021/nl204118h
    [16] DING F, CUI Y X, GE X C, et al. Ultra-broadband microwave metamaterial absorber[J]. Applied Physics Letters,2012,100(10):103506. doi: 10.1063/1.3692178
    [17] 顾钰, 王民, 蒲明博, 等. 基于石墨烯结合亚波长金属结构的太赫兹宽带动态吸收器[J]. 光电工程,2016,46(1):60-64.

    GU Yu, WANG Min, PU Mingbo, et al. Tunable broadband absorber in terahertz regime based on graphene and metallic sub-wavelength structure[J]. Opto-Electronic Engineering,2016,46(1):60-64.
    [18] XIAO D, ZHU M, WANG Q, et al. A flexible and ultra-broadband terahertz wave absorber based on graphenevertically aligned carbon nanotube hybrids[J]. Journal of Materials Chemistry C,2020,8(21):7244-7252. doi: 10.1039/D0TC01023E
    [19] LIU W, SONG Z. Terahertz absorption modulator with largely tunable bandwidth and intensity[J]. Carbon,2020,174:617-624.
    [20] ZHANG B L, LI Z X, HU Z D, et al. Analysis of a bidirectional metamaterial perfect absorber with band-switchability for multifunctional optical applications[J]. Results in Physics,2022,34:105313. doi: 10.1016/j.rinp.2022.105313
    [21] BAO Z Y, WANG J C, HU Z D, et al. Coordination multi-band absorbers with patterned irrelevant graphene patches based on multi-layer film structures[J]. Journal of Physics D:Applied Physics,2021,54(5):505306.
    [22] BAO Z Y, WANG J C, HU Z D, et al. Coordinated multi-band angle insensitive selection absorber based on graphene metamaterials[J]. Optics Express,2019,27(22):31435-31445. doi: 10.1364/OE.27.031435
    [23] WANG J C, WANG X S, SHAO H Y, et al. Peak modulation in multicavity-coupled graphene-based waveguide system[J]. Nanoscale Research Letter,2017,12:1-7. doi: 10.1186/s11671-016-1773-2
    [24] 冯睿. 红外波段周期微结构近完美吸收特性研究[D]. 哈尔滨: 哈尔滨工业大学, 2015.

    FENG Rui. Study on nearly perfect absorption of infrared periodic microstructure[D]. Harbin: Harbin Institute of Technology, 2015.
    [25] 苟杨九州, 彭晓昱. 太赫兹快速成像技术研究进展[J]. 重庆邮电大学学报(自然科学版),2021,33(2):216-229.

    GOU Yanjiuzhou, PENG Xiaoyu. Research progress of terahertz rapid imaging[J]. Journal of Chongqing University of Posts and Telecommunications(Natural Science Edition),2021,33(2):216-229.
    [26] 张玉平, 唐利斌, 刘玉菲, 等. 太赫兹新型探测器的研究进展及应用[J]. 红外与毫米波学报,2020,39(2):191-210. doi: 10.11972/j.issn.1001-9014.2020.02.007

    ZHANG Yuping, TANG Libin, LIU Yufei, et al. The research progress and application of novel terahertz detectors[J]. J. Infrared Millim. Waves,2020,39(2):191-210. doi: 10.11972/j.issn.1001-9014.2020.02.007
    [27] 罗成高, 刘康, 王宏强, 等. 太赫兹单光子雷达探测技术[J]. 中国科学:物理学力学天文学,2021,51:054202. doi: 10.1360/SSPMA-2020-0255

    LUO Chenggao, LIU Kang, WANG Hongqiang, et al. Terahertz single-photon radar detection technology[J]. Sci Sin-Phys Mech Astron,2021,51:054202. doi: 10.1360/SSPMA-2020-0255
    [28] 石粒力, 吴敬波, 涂学凑, 等. 太赫兹单光子探测器[J]. 中国科学:物理学力学天文学,2021,51:054203. doi: 10.1360/SSPMA-2020-0274

    SHI Libo, WU Jingbo, TU Xuecou, et al. Terahertz single photon detectors[J]. Sci Sin-Phys Mech Astron,2021,51:054203. doi: 10.1360/SSPMA-2020-0274
    [29] 罗成高, 邓彬, 程永强, 等. 精确制导前沿成像探测技术[J]. 国防科技大学学报,2019,41(5):174-184. doi: 10.11887/j.cn.201905025

    LUO Chenggao, DENG Bin, CHENG Yongqiang, et al. Advanced imaging and detecting technology for precision guidance[J]. Journal of National University of Defense Technology,2019,41(5):174-184. doi: 10.11887/j.cn.201905025
    [30] 杨玉平, 杨一宏, GRISCHKOWSKY D R. 宽带太赫兹波在大气中的远程探测研究及展望[J]. 物理,2013,42(10):712-719.

    YANG Yuping, YANG Yihong, GRISCHKOWSKY D R. Broadband long-path THz pulse transmission through the atmosphere[J]. Physics,2013,42(10):712-719.
    [31] 王玉文, 李瀚宇, 董志伟. 0.1 THz-1 THz频段太赫兹波在云雾中传输的衰减特性[J]. 微波学报,2014(6):560-563.

    WANG Yuwen, LI Hanyu, DONG Zhiwei. The attenuation characteristics of 0.01 THz-1 THz band terahertz wave transmitted in the clouds[J]. Journal of Microwave Science,2014(6):560-563.
    [32] 王蓉蓉. 大气水凝物中THz波和红外波的辐射传输特性[D]. 西安: 西安电子科技大学, 2014.

    WANG Rongrong. Radiation and transmission characteristics of THz and infrared waves by atmospheric hydrometeors[D]. Xian: Xidian University, 2014.
    [33] 盛楠, 廖成, 张青洪, 等. 太赫兹波大气衰减的抛物方程模型[J]. 太赫兹科学与电子信息学报,2016,14(2):175-179. doi: 10.11805/TKYDA201602.0175

    SHENG Nan, LIAO Cheng, ZHANG Qinghong, et al. Parabolic equation model for calculating atmospheric attenuation of THz wave[J]. Journal of Terahertz Science and Electronic Information Technology,2016,14(2):175-179. doi: 10.11805/TKYDA201602.0175
    [34] 房艳燕, 王玉文, 董志伟, 等. 太赫兹波大气分层传输特性[J]. 太赫兹科学与电子信息学报,2016,14(1):1-6.

    FANG Yanyan, WANG Yuwen, DONG Zhiwei, et al. Atmospheric attenuation characteristics of THz layered propagation[J]. Journal of Terahertz Science and Electronic Information Technology,2016,14(1):1-6.
  • 加载中
图(15) / 表(3)
计量
  • 文章访问数:  106
  • HTML全文浏览量:  74
  • PDF下载量:  5
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-04-22
  • 修回日期:  2022-06-28
  • 网络出版日期:  2022-09-24
  • 刊出日期:  2023-01-17

目录

    /

    返回文章
    返回