Wide-band terahertz absorbing structure with graphene based on dual-scale four separation layers optimization
-
摘要: 为实现对未来远程太赫兹雷达的高效对抗与隐身,针对典型太赫兹雷达工作频率设计了一种石墨烯太赫兹宽带吸波结构。宽带吸波结构以表层金属层/石墨烯层/介质层/底层金属层为基本吸波结构单元,利用遗传算法对双尺度基本吸波结构单元进行4分离层优化设计,确定宽带吸波结构的各层结构参数。仿真结果表明:宽带吸波结构在0.138 THz~2 THz频率范围内吸收效率优于80%,在0.157 THz~2 THz频率范围内吸收效率优于97.46%,典型太赫兹雷达工作频率处吸收效率均优于92.27%,满足太赫兹雷达对抗与隐身要求。Abstract: To realize high-efficiency countermeasures and stealth for future remote terahertz radar, a wide-band terahertz absorbing structure with graphene was designed for typical operating frequencies of terahertz radar. The basic absorbing structure unit of wide-band absorbing structure was the surface metal layer/graphene layer/dielectric layer/bottom metal layer, and the dual-scale four separation layers were designed and optimized to certain the structure parameters of each layer using the genetic algorithm. Simulation results show that the absorption efficiency of wide-band absorbing structure is better than 80% in the frequency range of 0.138 THz~2 THz, 97.46% in the frequency range of 0.157 THz~2 THz, and 92.27% at the typical terahertz radar operating frequency, which satisfy the demands of countermeasures and stealth for terahertz radars.
-
Key words:
- terahertz radar /
- graphene /
- stealth countermeasure /
- wide-band absorption
-
表 1 双尺度4分离层结构各层参数
Table 1 Parameters of each layer of dual scale and four separation layers structure
名称 表面金属
结构尺度/µm介质层
厚度/µm基本层
结构表面金属/
石墨烯厚度/nm尺度2第1层 24 21 M/G/I 15/1 尺度2第2层 15 53 M/G/I 15/1 尺度2第3层 6.4 47 M/G/I 15/1 尺度2第4层 8.8 25 M/G/I 15/1 尺度1第1层 449 107 M/G/I 15/1 尺度1第2层 246 141 M/G/I 15/1 尺度1第3层 221 140 M/G/I 15/1 尺度1第4层 170 128 M/G/I/M 15/1/2 µm 表 2 不同入射角度下单尺度和双尺度4分离层结构吸收率
Table 2 Absorption efficiency of single scale and dual scale four separation layers structure at different incident angles
入射角度/(°) 尺度1吸收率优于80%频率
范围/THz尺度2吸收率优于80%
频率范围/THz双尺度吸收率优于80%
频率范围/THz0 [0.195~0.936],[1.297~2.0] [0.594~2.0] [0.138~2.0] 10 [0.195~0.936],[1.316~2.0] [0.594~2.0] [0.138~2.0] 20 [0.195~0.993],[1.373~2.0] [0.613~2.0] [0.138~2.0] 30 [0.214~1.069],[1.487~2.0] [0.651~2.0] [0.157~2.0] 40 [0.233~1.202],[1.677~2.0] [0.727~2.0] [0.176~2.0] 50 [0.290~1.430],2.0(频点) [0.898~2.0] [0.233~2.0] 60 [0.404~1.278],[1.506~1.791] [1.278~2.0] [0.309~2.0] 表 3 不同加工误差下单尺度和双尺度4分离层结构吸收率
Table 3 Absorption efficiency of single scale and dual scale four separation layers structure at different machining errors
加工误差/% 尺度1吸收率优于80%频率
范围/THz尺度2吸收率优于80%
频率范围/THz双尺度吸收率优于80%
频率范围/THz0 [0.195~0.917],[1.297~2.0] [0.594~2.0] [0.138~2.0] +10 [0.176~0.741],[1.164~1.848] [0.518~1.905] [0.119~2.0] −10 [0.176~0.841],[1.164~1.848] [0.727~2.0] [0.138~2.0] -
[1] 吕治辉, 张栋文, 赵增秀, 等. 太赫兹雷达技术研究[J]. 国防科技,2015,36(2):23-26.LYU Zhihui, ZHANG Dongwen, ZHAO Zengxiu, et al. Research of terahertz radar technology[J]. National Defense Science and Technology,2015,36(2):23-26. [2] 董坤. 太赫兹雷达的特点及其应用[J]. 科技视界,2021(3):58-59.DONG Kun. Characteristics and applications of terahertz radar[J]. Science & Technology Vision,2021(3):58-59. [3] 周智伟. 太赫兹技术发展综述[J]. 军民两用技术与产品,2020(1):40-44.HOU Zhiwei. Overview of the development of terahertz technology[J]. Dual Use Technologies & Products,2020(1):40-44. [4] 武帅, 屈浩, 涂昊, 等. 太赫兹技术应用进展[J]. 电子技术应用,2019,45(7):3-18.WU Shuai, QU Hao, TU Hao, et al. Progresses towards the application of terahertz technologies[J]. Terahertz Technology and Its Application,2019,45(7):3-18. [5] 张剑, 杨悦. 太赫兹技术在未来陆海空天的军事应用[J]. 舰船电子工程,2020,40(8):9-11.ZHANG Jian, YANG Yue. Military application of terahertz technology in the future ground-air integrative battlefield[J]. Ship Electronic Engineering,2020,40(8):9-11. [6] 延凯悦, 冯毅, 马静艳, 等. 太赫兹应用分析和展望[J]. 邮电设计技术,2020(4):6-10. doi: 10.12045/j.issn.1007-3043.2020.04.002YAN Yuekai, FENG Yi, MA Jingyan, et al. Analysis and prospect of terahertz technology application[J]. Post and Telecommunications Design Technology,2020(4):6-10. doi: 10.12045/j.issn.1007-3043.2020.04.002 [7] 司黎明, 徐浩阳, 董琳, 等. 2020年太赫兹科学与技术热点回眸[J]. 科技导报,2021,39(1):201-209. doi: 10.3981/j.issn.1000-7857.2021.01.017SI Liming, XU Haoyang, DONG Lin, et al. Hot spots looking back of terahertz science and technology in 2020[J]. Technology Review,2021,39(1):201-209. doi: 10.3981/j.issn.1000-7857.2021.01.017 [8] TAO H, BINGHAM C M, PILON D, et al. A dual band terahertz metamaterial absorber[J]. Journal of Physics D-Applied Physics,2010,43(22):225102. doi: 10.1088/0022-3727/43/22/225102 [9] WEN Q Y, ZHANG H W, XIE Y S, et al. Dual band terahertz metamaterial absorber: design, fabrication, and characterization[J]. Applied Physics Letters,2009,95(24):241111. doi: 10.1063/1.3276072 [10] MA Y, CHEN Q, GRANT J, et al. A terahertz polarization insensitive dual band metamaterial absorber[J]. Optics Letters,2011,36(6):945-947. doi: 10.1364/OL.36.000945 [11] SHEN X P, CUI T J, ZHAO J M, et al. Polarization-independent wide-angle triple-band metamaterial absorber[J]. Optics Express,2011,19(10):9401-9407. doi: 10.1364/OE.19.009401 [12] SHEN X P, YANG Y, ZANG Y Z, et al. Triple-band terahertz metamaterial absorber: design, experiment, and physical interpretation[J]. Applied Physics Letters,2012,101(15):154102. doi: 10.1063/1.4757879 [13] 邹涛波. 基于超材料的太赫兹吸波体理论与工艺研究[D]. 桂林: 桂林电子科技大学, 2015.ZOU Taobo. Research on the theory and process of metamaterial terahertz absorber[D]. Guilin: Guilin University of Electronic Technology, 2015. [14] CUI Y X, XU J, FUNG K H, et al. A thin film broadband absorber based on multi-sized nanoantennas[J]. Applied Physics Letters,2011,99(25):253101. doi: 10.1063/1.3672002 [15] CUI Y X, FUNG K H, XU J, et al. Ultrabroadband light absorption by a sawtooth anisotropic metamaterial slab[J]. Nano Letters,2012,12(3):1443-1447. doi: 10.1021/nl204118h [16] DING F, CUI Y X, GE X C, et al. Ultra-broadband microwave metamaterial absorber[J]. Applied Physics Letters,2012,100(10):103506. doi: 10.1063/1.3692178 [17] 顾钰, 王民, 蒲明博, 等. 基于石墨烯结合亚波长金属结构的太赫兹宽带动态吸收器[J]. 光电工程,2016,46(1):60-64.GU Yu, WANG Min, PU Mingbo, et al. Tunable broadband absorber in terahertz regime based on graphene and metallic sub-wavelength structure[J]. Opto-Electronic Engineering,2016,46(1):60-64. [18] XIAO D, ZHU M, WANG Q, et al. A flexible and ultra-broadband terahertz wave absorber based on graphenevertically aligned carbon nanotube hybrids[J]. Journal of Materials Chemistry C,2020,8(21):7244-7252. doi: 10.1039/D0TC01023E [19] LIU W, SONG Z. Terahertz absorption modulator with largely tunable bandwidth and intensity[J]. Carbon,2020,174:617-624. [20] ZHANG B L, LI Z X, HU Z D, et al. Analysis of a bidirectional metamaterial perfect absorber with band-switchability for multifunctional optical applications[J]. Results in Physics,2022,34:105313. doi: 10.1016/j.rinp.2022.105313 [21] BAO Z Y, WANG J C, HU Z D, et al. Coordination multi-band absorbers with patterned irrelevant graphene patches based on multi-layer film structures[J]. Journal of Physics D:Applied Physics,2021,54(5):505306. [22] BAO Z Y, WANG J C, HU Z D, et al. Coordinated multi-band angle insensitive selection absorber based on graphene metamaterials[J]. Optics Express,2019,27(22):31435-31445. doi: 10.1364/OE.27.031435 [23] WANG J C, WANG X S, SHAO H Y, et al. Peak modulation in multicavity-coupled graphene-based waveguide system[J]. Nanoscale Research Letter,2017,12:1-7. doi: 10.1186/s11671-016-1773-2 [24] 冯睿. 红外波段周期微结构近完美吸收特性研究[D]. 哈尔滨: 哈尔滨工业大学, 2015.FENG Rui. Study on nearly perfect absorption of infrared periodic microstructure[D]. Harbin: Harbin Institute of Technology, 2015. [25] 苟杨九州, 彭晓昱. 太赫兹快速成像技术研究进展[J]. 重庆邮电大学学报(自然科学版),2021,33(2):216-229.GOU Yanjiuzhou, PENG Xiaoyu. Research progress of terahertz rapid imaging[J]. Journal of Chongqing University of Posts and Telecommunications(Natural Science Edition),2021,33(2):216-229. [26] 张玉平, 唐利斌, 刘玉菲, 等. 太赫兹新型探测器的研究进展及应用[J]. 红外与毫米波学报,2020,39(2):191-210. doi: 10.11972/j.issn.1001-9014.2020.02.007ZHANG Yuping, TANG Libin, LIU Yufei, et al. The research progress and application of novel terahertz detectors[J]. J. Infrared Millim. Waves,2020,39(2):191-210. doi: 10.11972/j.issn.1001-9014.2020.02.007 [27] 罗成高, 刘康, 王宏强, 等. 太赫兹单光子雷达探测技术[J]. 中国科学:物理学力学天文学,2021,51:054202. doi: 10.1360/SSPMA-2020-0255LUO Chenggao, LIU Kang, WANG Hongqiang, et al. Terahertz single-photon radar detection technology[J]. Sci Sin-Phys Mech Astron,2021,51:054202. doi: 10.1360/SSPMA-2020-0255 [28] 石粒力, 吴敬波, 涂学凑, 等. 太赫兹单光子探测器[J]. 中国科学:物理学力学天文学,2021,51:054203. doi: 10.1360/SSPMA-2020-0274SHI Libo, WU Jingbo, TU Xuecou, et al. Terahertz single photon detectors[J]. Sci Sin-Phys Mech Astron,2021,51:054203. doi: 10.1360/SSPMA-2020-0274 [29] 罗成高, 邓彬, 程永强, 等. 精确制导前沿成像探测技术[J]. 国防科技大学学报,2019,41(5):174-184. doi: 10.11887/j.cn.201905025LUO Chenggao, DENG Bin, CHENG Yongqiang, et al. Advanced imaging and detecting technology for precision guidance[J]. Journal of National University of Defense Technology,2019,41(5):174-184. doi: 10.11887/j.cn.201905025 [30] 杨玉平, 杨一宏, GRISCHKOWSKY D R. 宽带太赫兹波在大气中的远程探测研究及展望[J]. 物理,2013,42(10):712-719.YANG Yuping, YANG Yihong, GRISCHKOWSKY D R. Broadband long-path THz pulse transmission through the atmosphere[J]. Physics,2013,42(10):712-719. [31] 王玉文, 李瀚宇, 董志伟. 0.1 THz-1 THz频段太赫兹波在云雾中传输的衰减特性[J]. 微波学报,2014(6):560-563.WANG Yuwen, LI Hanyu, DONG Zhiwei. The attenuation characteristics of 0.01 THz-1 THz band terahertz wave transmitted in the clouds[J]. Journal of Microwave Science,2014(6):560-563. [32] 王蓉蓉. 大气水凝物中THz波和红外波的辐射传输特性[D]. 西安: 西安电子科技大学, 2014.WANG Rongrong. Radiation and transmission characteristics of THz and infrared waves by atmospheric hydrometeors[D]. Xian: Xidian University, 2014. [33] 盛楠, 廖成, 张青洪, 等. 太赫兹波大气衰减的抛物方程模型[J]. 太赫兹科学与电子信息学报,2016,14(2):175-179. doi: 10.11805/TKYDA201602.0175SHENG Nan, LIAO Cheng, ZHANG Qinghong, et al. Parabolic equation model for calculating atmospheric attenuation of THz wave[J]. Journal of Terahertz Science and Electronic Information Technology,2016,14(2):175-179. doi: 10.11805/TKYDA201602.0175 [34] 房艳燕, 王玉文, 董志伟, 等. 太赫兹波大气分层传输特性[J]. 太赫兹科学与电子信息学报,2016,14(1):1-6.FANG Yanyan, WANG Yuwen, DONG Zhiwei, et al. Atmospheric attenuation characteristics of THz layered propagation[J]. Journal of Terahertz Science and Electronic Information Technology,2016,14(1):1-6. -