留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于光子集成芯片的可穿戴光纤光栅解调研究

李鸿强 毛泉桦 安芷萱 林志琳 王英杰 孟文涛 朱智越 张振 Juan DanielPrades Garcia

李鸿强, 毛泉桦, 安芷萱, 林志琳, 王英杰, 孟文涛, 朱智越, 张振, Juan DanielPrades Garcia. 基于光子集成芯片的可穿戴光纤光栅解调研究[J]. 应用光学, 2023, 44(1): 219-225. doi: 10.5768/JAO202344.0108001
引用本文: 李鸿强, 毛泉桦, 安芷萱, 林志琳, 王英杰, 孟文涛, 朱智越, 张振, Juan DanielPrades Garcia. 基于光子集成芯片的可穿戴光纤光栅解调研究[J]. 应用光学, 2023, 44(1): 219-225. doi: 10.5768/JAO202344.0108001
LI Hongqiang, MAO Quanhua, AN Zhixuan, LIN Zhilin, WANG Yingjie, MENG Wentao, ZHU Zhiyue, ZHANG Zhen, Juan Daniel Prades Garcia. Wearable fiber grating demodulation based on photonic integrated chip[J]. Journal of Applied Optics, 2023, 44(1): 219-225. doi: 10.5768/JAO202344.0108001
Citation: LI Hongqiang, MAO Quanhua, AN Zhixuan, LIN Zhilin, WANG Yingjie, MENG Wentao, ZHU Zhiyue, ZHANG Zhen, Juan Daniel Prades Garcia. Wearable fiber grating demodulation based on photonic integrated chip[J]. Journal of Applied Optics, 2023, 44(1): 219-225. doi: 10.5768/JAO202344.0108001

基于光子集成芯片的可穿戴光纤光栅解调研究

doi: 10.5768/JAO202344.0108001
基金项目: 国家自然科学基金(61675154);天津市重点研发计划项目(19YFZCSY00180);天津市科技计划项目(20YDTPJC01380)
详细信息
    作者简介:

    李鸿强(1975—),男,博士,教授,主要从事光纤光栅传感与解调技术研究。E-mail:lihongqiang@tiangong.edu.cn

  • 中图分类号: TN914

Wearable fiber grating demodulation based on photonic integrated chip

  • 摘要: 为了实现光纤光栅传感器在可穿戴系统中的应用,提出了一种基于硅基光子集成芯片的可穿戴光纤光栅传感解调系统。基于比利时iSiPP50G工艺的光子集成芯片由4×1长波长VCSEL阵列、1×8阵列波导光栅、2×2 MMI耦合器、4×1光纤光栅耦合器阵列、Ge-on-Si波导光电探测器、直波导和弯曲波导等组成。在完成对VCSEL光源金线键合和光子集成芯片光纤耦合封装的基础上,设计了手环式解调电路,对人体温度和心音信号进行了实时测量。实验结果表明: 解调系统的动态波长检测范围为1 540 nm~1 560 nm,波长分辨率为0.08 pm,解调精度为5 pm,温度监测范围为35 ℃~42 ℃,误差为±0.1 ℃;可检测50 Hz~100 Hz频率范围内的心音信号,可识别出第一心音和第二心音,并计算出心动周期、心率、第一心音时限、第二心音时限和心力等特征参数。
  • 图  1  解调系统示意图

    Fig.  1  Schematic diagram of demodulation system

    图  2  柔性电路实物图

    Fig.  2  Physical picture of flexible circuit

    图  3  温度解调原理图

    Fig.  3  Schematic diagram of temperature demodulation

    图  4  心音解调原理图

    Fig.  4  Schematic diagram of heart sound demodulation

    图  5  传感器实物图和实验结果

    Fig.  5  Physical picture of sensor and experimental results

    图  6  温度解调实验结果

    Fig.  6  Experimental results of temperature demodulation

    图  7  传感器实物图和信号处理

    Fig.  7  Physical picture of sensor and signal processing

    图  8  心音信号处理和特征提取流程图

    Fig.  8  Flow chart of heart sound signal processing and feature extraction

    表  1  实测心音信号特征参数

    Table  1  Measured characteristic parameters of heart sound signal

    心动
    周期/ms
    心率/
    次·min−1
    第一心音
    时限/ms
    第二心音
    时限/ms
    心力
    实测值803 75116 710.92
    正常范围600~100060~10080~16060~1200.5~2.5
    下载: 导出CSV
  • [1] HUANG Ming, TAMURA T, TANG Zunyi, et al. A wearable thermometry for core body temperature measurement and its experimental verification[J]. IEEE Journal of Biomedical and Health Informatics,2017,21(3):708-714. doi: 10.1109/JBHI.2016.2532933
    [2] HU Xuhui, ZENG Hong, SONG Aiguo, et al. Robust continuous hand motion recognition using wearable array myoelectric sensor[J]. IEEE Sensors Journal,2021,21(18):20596-20605. doi: 10.1109/JSEN.2021.3098120
    [3] SHCHERBINA A, MATTSSON C M, WAGGOTT D, et al. Accuracy in wrist-worn, sensor-based measurements of heart rate and energy expenditure in a diverse cohort[J]. Journal of Personalized Medicine,2017,7(2):E3. doi: 10.3390/jpm7020003
    [4] CHOI H, NAYLON J, LUZIO S, et al. Design and in vitro interference test of microwave noninvasive blood glucose monitoring sensor[J]. IEEE Transactions on Microwave Theory and Techniques,2015,63(10):3016-3025. doi: 10.1109/TMTT.2015.2472019
    [5] KIM I, KWON D, LEE D, et al. A highly permselective electrochemical glucose sensor using red blood cell membrane[J]. Biosensors and Bioelectronics,2018,102:617-623. doi: 10.1016/j.bios.2017.12.002
    [6] XU Jichao, YUAN Kongjun. Wearable muscle movement information measuring device based on acceleration sensor[J]. Measurement,2021,167:108274. doi: 10.1016/j.measurement.2020.108274
    [7] RUOCCO A, VAN THOURHOUT D, BOGAERTS W. Silicon photonic spectrometer for accurate peak detection using the vernier effect and time-domain multiplexing[J]. Journal of Lightwave Technology,2014,32(19):3351-3357. doi: 10.1109/JLT.2014.2346585
    [8] VU C, KIM J. Muscle activity monitoring with fabric stretch sensors[J]. Fibers and Polymers,2017,18(10):1931-1937. doi: 10.1007/s12221-017-7042-x
    [9] BOUTRY C M, NGUYEN A, LAWAL Q O, et al. Pressure sensors: a sensitive and biodegradable pressure sensor array for cardiovascular monitoring[J]. Advanced Materials,2015,27(43):6953. doi: 10.1002/adma.201570294
    [10] GONG Ting, YAN Hui. Multi-sensor information fusion and application[J]. Applied Mechanics and Materials, 2014, 602/603/604/605: 2623-2626.
    [11] GUO J, ZHOU B, YANG C, et al. Stretchable and upconversion-luminescent polymeric optical sensor for wearable multifunctional sensing[J]. Optics Letters,2019,44(23):5747-5750. doi: 10.1364/OL.44.005747
    [12] XING J Z, ZHU Lijun, GABOS S, et al. Microelectronic cell sensor assay for detection of cytotoxicity and prediction of acute toxicity[J]. Toxicology in Vitro,2006,20(6):995-1004. doi: 10.1016/j.tiv.2005.12.008
    [13] KLUNDER G L, BÜRCK J, ACHE H J, et al. Temperature effects on a fiber-optic evanescent wave absorption sensor[J]. Applied Spectroscopy,1994,48(3):387-393. doi: 10.1366/0003702944028344
    [14] WANG Yiping, WANG Ming, XIA Wei, et al. Optical fiber Bragg grating pressure sensor based on dual-frequency optoelectronic oscillator[J]. IEEE Photonics Technology Letters,2017,29(21):1864-1867. doi: 10.1109/LPT.2017.2754415
    [15] GAO Wei, EMAMINEJAD S, NYEIN H Y Y, et al. Fully integrated wearable sensor arrays for multiplexed in situ perspiration analysis[J]. Nature,2016,529(7587):509-514. doi: 10.1038/nature16521
    [16] YE E, ATABAKI A H, HAN N, et al. Miniature, sub-nanometer resolution Talbot spectrometer[J]. Optics Letters,2016,41(11):2434-2437. doi: 10.1364/OL.41.002434
    [17] YANG Z, ALBROW-OWEN T, CUI H, et al. Single-nanowire spectrometers[J]. Science,2019,365(6457):1017-1020. doi: 10.1126/science.aax8814
    [18] MARIN Y E, CELIK A, FARALLI S, et al. Integrated dynamic wavelength division multiplexed FBG sensor interrogator on a silicon photonic chip[J]. Journal of Lightwave Technology,2019,37(18):4770-4775. doi: 10.1109/JLT.2019.2919765
    [19] KIM H T, YU M. High-speed optical sensor interrogator with a silicon-ring-resonator-based thermally tunable filter[J]. Optics Letters,2017,42(7):1305-1308. doi: 10.1364/OL.42.001305
    [20] LI Hongqiang, MA Xiangdong, CUI Beibei, et al. Chip-scale demonstration of hybrid III–V/silicon photonic integration for an FBG interrogator[J]. Optica,2017,4(7):692. doi: 10.1364/OPTICA.4.000692
  • 加载中
图(8) / 表(1)
计量
  • 文章访问数:  186
  • HTML全文浏览量:  154
  • PDF下载量:  21
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-05-02
  • 修回日期:  2022-05-31
  • 网络出版日期:  2022-11-22
  • 刊出日期:  2023-01-17

目录

    /

    返回文章
    返回