显微镜景深拓展技术研究

张平, 吴嘉敏, 林靖宇, 刘烨斌

张平, 吴嘉敏, 林靖宇, 刘烨斌. 显微镜景深拓展技术研究[J]. 应用光学, 2014, 35(6): 1075-1082.
引用本文: 张平, 吴嘉敏, 林靖宇, 刘烨斌. 显微镜景深拓展技术研究[J]. 应用光学, 2014, 35(6): 1075-1082.
Zhang Ping, Wu Jia-min, Lin Jing-yu, Liu Ye-bin. Extended depth of field in microscopy[J]. Journal of Applied Optics, 2014, 35(6): 1075-1082.
Citation: Zhang Ping, Wu Jia-min, Lin Jing-yu, Liu Ye-bin. Extended depth of field in microscopy[J]. Journal of Applied Optics, 2014, 35(6): 1075-1082.

显微镜景深拓展技术研究

基金项目: 

国家自然科学基金委国际合作项目“计算摄像学中的新理论及新方法”(61120106003)

详细信息
    通讯作者:

    张平(1979-),男,江苏张家港人,博士,高工,主要从事光电系统研究工作。 Email:zhangping_wuxi@163.com

  • 中图分类号: TN29;TH742

Extended depth of field in microscopy

  • 摘要: 随着生命科学需求的日益迫切,显微镜的景深拓展成为显微领域的一个重要发展方向,为了更好地了解、研究显微景深问题,对景深拓展技术进行研究与总结。以显微景深的大幅提升为出发点,就光学切片扫描、空间光调制、波前编码及光场显微4个方面进行了全面的综合性论述。对这些技术的原理、方式及拓展水平进行了阐述,并就其技术缺陷、发展方向进行了归纳总结。随着技术水平的提高,显微景深较传统显微镜可提高1~2个数量级。
    Abstract: Due to the urgent needs in life sciences, the extended depth of field (EDOF) in microscopy is becoming a focus. In order to study the microscopy depth of filed, the EDOF was studied and summarized. Based on the dramatic enhancement of EDOF, the optical scanning, spatial light modulation, wavefront coding and light filed microscopy were introduced and compared synthetically. Their theory, method and capacities for EDOF were summarized, and the technology defect and future development were analyzed. With the enhancement of technologies, the depth of filed in microscopy can be enhanced about 1 or 2 orders of magnitude compared with traditional microscopy.
  • [1]Ortyn W E, Perry D J, Venkatachalam V, et al. Extended depth of field imaging for high speed cell analysis[J]. Cytometry Part A, 2007, 71(4): 215-231.
    [2]Nicolas O, Alexandre M B, Craig B A, et al. Two-photon microscopy with simultaneous standard and extended depth of field using a tunable acoustic gradient-index lens [J]. Optics Letters, 2009, 34(11): 1684-1686.
    [3]Pantazis M. Depth of field extension with spherical optics [J]. Optics Express, 2008, 16(7): 12995-13004.
    [4]Zhao T, Yu F. Point spread function analysis of a cubic phase wavefront coding system with a circular pupil [J]. Optics Express, 2012, 20(3): 2408-2419.
    [5]Zhang W, Ye Z, Zhao T, et al. Point spread function characteristics analysis of the wavefront coding system [J]. Optics Express, 2007, 15(4): 1543-1552.
    [6]Botcherby E J, Booth M J, Juskaitis R, et al. Real-time extended depth of field microscopy [J]. Optics Express, 2008, 16(26): 21843-21848.
    [7]Florian O F, Fabian F V, Benjamin S, et al. Rapid 3D light-sheet microscopy with a tunable lens [J]. Optics Express, 2013, 21(18): 21010-21026.
    [8]Pieper R J,Korpel A. Image-processing for extended depth of field [J]. Applied Optics, 1983, 22(10): 1449-1453.
    [9]Sugimoto S A, Ichioka Y. Digital composition of images with increased depth of focus considering depth information [J]. Applied Optics, 1985, 24(14): 2076-2080.
    [10]Widjanarko T, Hardieb R C. A post-processing technique for extending depth of focus in conventional optical microscopy [J]. Optics and Laser Technology, 2002, 34(4): 299-305.
    [11]Meneses J, Suarez M A, Braga J, et al. Extended depth of field using shapelet-based image analysis [J]. Applied Optics, 2008, 47(2): 169-178.
    [12]De I, Chanda B. A simple and efficient algorithm for multifocus image fusion using morphological wavelets [J]. Signal Processing, 2006, 86(5): 924-936.
    [13]Forster B, Ville D V D, Berent J, et al. Complex wavelets for extended depth-of-field: a new method for the fusion of multichannel microscopy images [J]. Microscopy Research and Technique, 2004, 65(1): 33-42.
    [14]Aguet F, De Van V D, Unser M. Model-based2.5-d deconvolution for extended depth of field in brightfield microscopy [J]. IEEE Trans. Image Process., 2008, 17(7): 1144-1153.
    [15]Liu S, Hua H. Extended depth-of-field microscopic imaging with a variable focus microscope objective [J]. Optics Express, 2011, 19(1): 353-362.
    [16]Giese J D, Ford T N, Mertz J. Fast volumetric phase-gradient imaging in thick samples [J]. Optics Express, 2014, 22(1): 1152-1162.
    [17]Dowski E R, Cathey W T. Extended depth of field through wave-front coding [J]. Applied Optics, 1995, 34(11): 1859-1866.
    [18]Tucker S C, Cathey W T, Dowski E R. Extended depth of field and aberration control for inexpensive digital microscope systems [J]. Optics Express, 1999, 4(11):  467-474.
    [19]Zhao H, Li Y. Optimized logarithmic phase masks used to generate defocus invariant modulation transfer function for wavefront coding system [J]. Optics Letters, 2010, 35(15): 2630-2631.
    [20]Sauceda A, Castan~eda J O. High focal depth with fractional-power wave fronts [J]. Optics Letters, 2004, 29(6): 560-562.
    [21]Carles G, Muyo G, Bosch S, et al. Use of a spatial light modulator as an adaptable phase mask for wavefront coding [J]. Journal of Modern Optics, 2010, 57(10): 893-900.
    [22]Yang Q, Liu L, Sun J. Optimized phase pupil masks for extended depth of field [J]. Optics Communications, 2007, 272(1): 56-66.
    [23]Zhou F, Ye R, Li G, et al. Optimized circularly symmetric phase mask to extend the depth of focus [J]. J. Opt. Soc. Am. A, 2009, 26(8): 1889-1895.
    [24]Zhao H, Li Y. Optimized sinusoidal phase mask to extend the depth of field of an incoherent imaging system [J]. Optics Letters, 2010, 35(2): 267-276.
    [25]Zhao T Y, Mauger T, Li G Q. Optimization of wavefront-coded infinitycorrected microscope systems with extended depth of field [J]. Optics Express, 2012, 20(3): 2408-2419.
    [26]Mo X. Optimized annular phase masks to extend depth of field [J]. Optics Letters, 2012, 37(11): 1808-1817.
    [27]Liu M, Dong L Q, Zhao Y J, et al. Stationary phase analysis of generalized cubic phase mask wavefront coding [J]. Optics Communications, 2013, 298-299: 67-74.
    [28]Carles G. Analysis of the cubic-phase wavefront-coding function: physical insight and selection of optimal coding strength [J]. Optics and Lasers in Engineering, 2012, 15(10):1377-1382.
    [29]Chen S, Fan Z, Xu Z, et al. Wavefront coding technique for controlling thermal defocus aberration in an infrared imaging system [J]. Optics Letters, 2011, 36(16): 3021-3023.
    [30]Pan C, Chen J, Zhang R, et al. Extension ratio of depth of fieldby wavefront coding method [J]. Optics Express, 2008, 16(17): 13364-13371.
    [31]Hell S W, Hhninen S W, Kuusisto A. Annular aperture two-photon excitation microscopy [J]. Optics Communications, 1995, 117: 22-24.
    [32]Song W,Lee J, Kwon H S. Enhancement of imaging depth of two-photon microscopy using pinholes: analytical simulation and Experiments [J]. Optics Express, 2012, 20(18): 20605-20622.
    [33]Dalgarno P A, Dalgarno H I C, Putoud A. Multiplane imaging and three dimensional nanoscale particle tracking in biological microscopy [J]. Optics Express, 2010, 18(2): 877-884.
    [34]Iemmi C. Depth of focus increase by multiplexing programmable diffractive lenses [J].  Optics Express, 2006, 14(22): 10207-10219.
    [35]Maurer C, Khan S, Fassl S, et al. Depth of field multiplexing in microscopy [J]. Optics Express, 2010, 18( 3): 3023-3034.
    [36]Lee M P, Gibson G M, Bowman R, et al. A multi-modal stereo microscope based on a spatial light modulator [J]. Optics Express, 2013, 21(4): 16541-16551.
    [37]Mcintyre T J, Maurer C, Bernet S, et al. Differential interference contrast imaging using a spatial light modulator [J]. Optics Letters, 2009, 34(19): 2988-2990.
    [38]Maurer C,Jesacher A, Bernet S, et al. Phase contrast microscopy with full numerical aperture illumination [J]. Optics Express, 2008, 16(24): 19821-19829.
    [39]Levoy M. Hanrahan P. Light field rendering [C]// Proc- SIGGRAPH. New York: ACM Press, 1996: 31-42.
    [40]Levoy M. Light fields and computer imaging [J]. IEEE Computer, 2006, 39(18): 46-55.
    [41]Ng R, Levoy M. Bredif M. Light field photography with a hand-held plenoptie camera [R]. Stanford: Stanford Computer Science Tech Report, 2005.
    [42]Levoy M, Ng R, Adams A. Light field microscopy [C]// Proc. SIGGRAPH. New York: ACM Press, 2006: 924-934.
    [43]Lim Y T, Park J H, Kwon K C,et al. Analysis on enhanced depth of field for integral imaging microscope [J]. Optics Express, 2012, 20(21): 23480-23488.
    [44]Broxton M, Grosenick L, Yang S, et al. Wave optics theory and 3-D deconvolution for the light field microscope [J]. Optics Express, 2013, 21(21): 25418-25439.
    [45]Favaro P. A split-sensor light field camera for extended depth of and superresolution [J]. SPIE, 2012, 8436(2): 1-9.
    [46]Lu C, Muenzel S, Fleischer J W. High-resolution light-field microscopy[J]. Computational Optical Sensing and Imaging, 2013, CTh3B(2): 23-27.
    [47]Ortyn W E, Perry D J, Venkatachalam V, et al. Extended depth of field imaging for high speed cell analysis [J]. Cytometry Part A, 2007, 71(4): 215-231.
    [48]Levoy M, Zhang Z, Mcdowell I. Recording and controlling the 4D light field in a microscope using microlens arrays [J]. Journal of Microscopy, 2009, 235(2): 144-162.
计量
  • 文章访问数:  1655
  • HTML全文浏览量:  126
  • PDF下载量:  216
  • 被引次数: 0
出版历程
  • 刊出日期:  2014-11-14

目录

    /

    返回文章
    返回