融合区域生长与霍夫变换的内窥图像分割算法

耿春明, 方菲

耿春明, 方菲. 融合区域生长与霍夫变换的内窥图像分割算法[J]. 应用光学, 2014, 35(6): 1009-1015.
引用本文: 耿春明, 方菲. 融合区域生长与霍夫变换的内窥图像分割算法[J]. 应用光学, 2014, 35(6): 1009-1015.
Geng Chun-ming, Fang Fei. Endoscopic image segmentation method combined region growing and Hough transformation[J]. Journal of Applied Optics, 2014, 35(6): 1009-1015.
Citation: Geng Chun-ming, Fang Fei. Endoscopic image segmentation method combined region growing and Hough transformation[J]. Journal of Applied Optics, 2014, 35(6): 1009-1015.

融合区域生长与霍夫变换的内窥图像分割算法

详细信息
    通讯作者:

    耿春明(1964-),男,黑龙江佳木斯人,副教授,硕士生导师,主要从事工业检测、图像处理、机电一体化及特种加工等方面的研究工作。Email:gengcm@buaa.edu.cn

  • 中图分类号: TN247; TP391

Endoscopic image segmentation method combined region growing and Hough transformation

  • 摘要: 为准确地划分出实际内窥图像的有效检测区域,依据此类图像的具体特点提出一种综合区域生长和霍夫变换的分割算法。利用区域生长大致分割出感兴趣区域,可能会存在漏检边缘或虚假边缘,通过二值形态学处理对图像进行平滑滤波和去噪,采用Canny算子在抑制噪声的同时进行边缘检测,应用霍夫变换检测圆的算法确定图像内有效区域的位置。通过对90组实际内窥图像在Visual C++ 6.0上进行仿真,实验结果表明:有88组内窥图像能够精确地分割强光干扰且划分出有效检测区域;仅有2组图像分割出的强光干扰及划分出的有效检测区域不够准确。
    Abstract: An image segmentation method for effective detection area based on region growing and Hough transformation was proposed in view of the features of actual endoscopic image. Firstly, region growth was used to segment the region of interest (ROI) roughly, there might be missed edge or false edges. Then the image was smoothed to remove noise by morphological processing. Next, the Canny operator was used to detect the edge and suppress the noise at the same time . In the end, Hough transformation, which was applied to detect circles, was conducted to determine the image position of the effective regions. The simulations of 90 groups of actual endoscopic images with Visual C++ 6.0 were done.The experimental result shows that the method can segment the strong light interference and extract the effective detection regions accurately of 88 groups;only 2 of them were not accurate enough.
  • [1]Guo Suoli, Xin Dong, Liu Yanfei. Survey of modern image segmentation method[J]. Journal of Sichuan Ordnance, 2012,33(7):93-96.
    郭锁利,辛栋,刘延飞.近代图像分割方法综述[J].四川兵工学报,2012,33(7):93-96.
    [2]Zhang Ling, Guo Leimin, He Wei,et al. An image segmentation algorithm based on maximal variance between-class and region growing[J]. Information and Electronic Engineering, 2005,3(2):91-93,96.
    张玲,郭磊民,何伟,等.一种基于最大类间方差和区域生长的图像分割法[J].信息与电子工程,2005,3(2):91-93,96.
    [3]Luo Wencun. A new image segmentation approach by integration of thresholding and region growing[J]. Modern Computer, 2001,115:43-46.
    罗文村.基于阈值法与区域生长法综合集成的图像分割法[J].现代计算机,2001,115:43-46.
    [4]Yu Dianhong. Image detecting and processing technology[M]. Xi-an: Xi-an University of Electronic Science and Technology Press, 2006:155-159.
    于殿泓.图像检测与处理技术[M].西安:西安电子科技大学出版社,2006:155-159.
    [5]Ye Fudong. An graphic detection algorithm based on Hough transform[J]. Journal of Hubei Vocational College of Ecological Engineering, 2011,9(3):45-49.
    叶富东.基于霍夫变换的图形检测算法[J].湖北生态工程职业技术学院学报,2011,9(3):45-49.
    [6]Yu Zhaohui, Pang Yechi, Yu Tao. The engineering application and digital image processing of visual C++[M]. Beijing: China Railway Publishing House, 2012:335-353.
    俞朝晖,庞也驰,于涛.Visual C++数字图像处理与工程应用实践[M].北京:中国铁道出版社,2012:335-353.
    [7]He Dong,Yang Fengbo,Lin Suzhen,et al. Colour transfer for grayscale images based on morphology transformation and FFCM cluster[J]. Journal of Applied Optics, 2012, 33(2):300-304.
    贺栋,杨风暴,蔺素珍,等.基于形态学变换和FFCM聚类的灰度图像颜色迁移算法[J].应用光学,2012, 33(2):300-304.
    [8]Miao Yu, Wang Yanchun, Guo Naizhu,et al. Region growth algorithm based on edge detection ending condition[J]. Journal of Changchun University of Science and Technology, 2009,32(4):680-682,556.
    苗语,王艳春,郭乃珠,等.基于边缘检测终止条件的区域生长算法[J].长春理工大学学报,2009,32(4):680-682,556.
    [9]Trucco E,Verri A. Introductory techniques for 3-D computer vision [M]. Englewood Cliffs:Pretice Hall, 1998:71-79.
    [10]Tao Tangfei, Han Chongzhao, Dai Xuefeng, et al. An infrared image segmentation method based on edge detection and region growing[J]. Opto-Electronic Engineering, 2004,31(10):50-52,68.
    陶唐飞,韩崇昭,代雪峰,等.综合边缘检测和区域生长的红外图像分割方法[J].光电工程,2004,31(10):50-52,68.
    [11]Illingworth J,Kittler J. A survey of the Hough transform[J]. Computer Vision Graphics and Image Process,1988,44(1): 87-116.
    [12]Wang Xuewei,Wang Shili,Li Ke. Characteristic of ship target IR image[J]. Journal of Applied Optics, 2012, 33(5):837-840.
    王学伟,王世立,李珂.船舰目标红外图像特性研究[J].应用光学,2012,33(5):837-840.
    [13]Zhao Xiaochuan, He Hao, Miu Yuancheng. Digital image processing of MATLAB[M]. Beijing: China Machine Press, 2013:97-101.
    赵小川,何灏,缪远诚.MATLAB数字图像处理实战[M].北京:机械工业出版社,2013:97-101.
    [14]Jia Yonghong. Digital image processing[M]. Wuhan: Wuhan University Press, 2003:133-145.
    贾永红.数字图像处理[M].武汉:武汉大学出版社,2003:133-145.
    [15]Chen Yanyan, Wang Yuanqing. Quantitative comparison of common edge detection algorithms[J]. Computer Engineering, 2008, 34(17): 202-204.
    陈彦燕,王元庆.常用边缘检测算法的定量比较[J].计算机工程,2008,34(17): 202-204.
计量
  • 文章访问数:  1433
  • HTML全文浏览量:  116
  • PDF下载量:  294
  • 被引次数: 0
出版历程
  • 刊出日期:  2014-11-14

目录

    /

    返回文章
    返回