结构光三维测量系统标定的关键算法研究

朱统晶, 周平, 刘欣冉, 袁骏杰

朱统晶, 周平, 刘欣冉, 袁骏杰. 结构光三维测量系统标定的关键算法研究[J]. 应用光学, 2014, 35(5): 848-852.
引用本文: 朱统晶, 周平, 刘欣冉, 袁骏杰. 结构光三维测量系统标定的关键算法研究[J]. 应用光学, 2014, 35(5): 848-852.
Zhu Tong-jing, Zhou Ping, Liu Xin-ran, Yuan Jun-jie. Crucial algorithms for structural light 3D measurement system calibration[J]. Journal of Applied Optics, 2014, 35(5): 848-852.
Citation: Zhu Tong-jing, Zhou Ping, Liu Xin-ran, Yuan Jun-jie. Crucial algorithms for structural light 3D measurement system calibration[J]. Journal of Applied Optics, 2014, 35(5): 848-852.

结构光三维测量系统标定的关键算法研究

详细信息
    通讯作者:

    朱统晶(1990-),男,江苏南京人,硕士研究生,主要从事结构光三维测量的算法研究。 Email:zhutongjing@163.com

  • 中图分类号: TN946; TP391

Crucial algorithms for structural light 3D measurement system calibration

  • 摘要: 系统参数标定是结构光三维测量系统的关键问题之一,标定板特征圆圆心检测精度与投影仪、相机镜头gamma效应引起的相位误差是系统参数标定的主要误差来源。采用Sobel算子粗定位标定板特征圆的边缘点,以正交傅里叶-马林矩(OFMM)算子对边缘点进行亚像素定位,用椭圆拟合法确定特征圆圆心的方法提高标定板特征圆检测精度。同时,推导结构光三维测量系统gamma非线性数学模型,将计算得到的系统gamma值的倒数作为投影正弦光栅的指数以降低gamma效应引起的相位误差。实验结果证明了该方法的准确性,与不采用亚像素边缘检测与gamma校正相比,X、Y方向的标定精度分别提高约3.5倍与5倍。
    Abstract: System parameter calibration is crucial to structure light three-dimension measurement system. The calibration error is mainly due to the detection accuracy of the characteristic circular center of calibration board and the gamma distortion of the projector and camera. An accurate circular center detection method and a gamma pre-calibration method were proposed to improve calibration accuracy. The pixel edge detection with Sobel operator and subpixel edge detection with orthogonal Fourier-Mellin moments (OFMM) operator were used to detect the circular edge accurately, moreover, the circular center was detected by ellipse fitting method. The gamma nonlinear distortion model was analyzed to obtain the system gamma value, whose reciprocal was used to modify the ideal sinusoidal fringe pattern as its exponent. The experimental results show the effectiveness of the methods. The calibration accuracy increases by a factor of 3.5 in X direction and 5 in Y direction compared with that without these methods.
  • [1]Xu Qinghong, Zhong Yuexian. System calibration technique of profilometry by projected grating[J]. Optical Technique, 2000, 26(2): 126-129.
    许庆红, 钟约先. 光栅投影轮廓测量的系统标定技术[J]. 光学技术, 2000, 26(2): 126-129.
    [2]An Dong, Da Feipeng, Gai Shaoyan, et al. New system calibration method based on fringe projection profilometry [J]. Journal of Applied Optics, 2014, 35(1): 81-84.
    安东, 达飞鹏,盖绍彦,等. 新的基于条纹投影轮廓测量的系统标定方法[J]. 应用光学, 2014, 35(1): 81-84.
    [3]Zhang S. Recent progresses on real-time 3D shape measurement using digital fringe projection techniques[J]. Opt. Laser Eng. ,2010,48:149-158 .
    [4]Zhang Hu, Da Feipeng, Xing Dekui. Algorithm of centre location of ellipse in optical measurement[J].Journal of Applied Optics, 2008, 29(6): 905-911.
    张虎, 达飞鹏, 邢德奎. 光学测量中椭圆圆心定位算法研究 [J]. 应用光学, 2008, 29(6): 905-911.
    [5]Tabatbaai A J, Mitchell O R. Edge location to subpixel values in digital imagery[J]. Pattern Analysis and Machine Intelligence, IEEE Transactions on, 1984 (2): 188-201.
    [6]Lyvers E P, Mitchell O R, Akey M L, et al. Subpixel measurements using a moment-based edge operator[J]. Pattern Analysis and Machine Intelligence, IEEE Transactions on, 1989, 11(12): 1293-1309.
    [7]Ghosal S, Mehrotra R. Orthogonal moment operators for subpixel edge detection[J]. Pattern recognition, 1993, 26(2): 295-306.
    [8] Bin T J, Lei A, Jiwen C, et al. Subpixel edge location based on orthogonal Fourier-Mellin moments[J]. Image and Vision Computing, 2008, 26(4): 563-569.
    [9]Qu Yingdong, Cui Chengsong, Chen Shanben, et al. A fast subpixel edge measurement method based on Sobel-Zernike moment operator[J]. Opto-Electronic Engineering, 2004, 30(5): 59-61.
    曲迎东, 崔成松, 陈善本, 等. 利用 Sobel-Zernike 矩算子白勺快速亚像素边缘检测方法[J]. 光电工程, 2004, 30(5): 59-61.
    [10]Zhang S, Huang P S. Phase error compensation for a 3-D shape measurement system based on the phase-shifting method[J]. Optical Engineering, 2007, 46(6): 063601063601-9.
    [11]Chen X, Xi J, Jin Y. Phase error compensation method using smoothing spline approximation for a three-dimensional shape measurement system based on gray-code and phase-shift light projection[J]. Optical Engineering, 2008, 47(11): 113601-113601-9.
    [12]Liu K, Wang Y, Lau D L, et al. Gamma model and its analysis for phase measuring profilometry [J]. JOSA A, 2010, 27(3): 553-562.
    [13]Hoang T, Pan B, Nguyen D, et al. Generic gamma correction for accuracy enhancement in fringe-projection profilometry [J]. Optics Letters, 2010, 35(12): 1992-1994.
    [14]Li Z, Li Y. Gamma-distorted fringe image modeling and accurate gamma correction for fast phase measuring profilometry [J]. Optics Letters, 2011, 36(2): 154-156.
    [15]Zhang X, Zhu L, Li Y, et al. Generic non-sinusoidal fringe model and gamma calibration in phase measuring profilometry [J]. JOSA A, 2012, 29(6): 1047-1058.
计量
  • 文章访问数:  1794
  • HTML全文浏览量:  144
  • PDF下载量:  188
  • 被引次数: 0
出版历程
  • 刊出日期:  2014-10-14

目录

    /

    返回文章
    返回