基于Kinect传感器多深度图像融合的物体三维重建

郭连朋, 陈向宁, 刘彬, 刘田间

郭连朋, 陈向宁, 刘彬, 刘田间. 基于Kinect传感器多深度图像融合的物体三维重建[J]. 应用光学, 2014, 35(5): 811-816.
引用本文: 郭连朋, 陈向宁, 刘彬, 刘田间. 基于Kinect传感器多深度图像融合的物体三维重建[J]. 应用光学, 2014, 35(5): 811-816.
Guo Lian-peng, Chen Xiang-ning, Liu Bin, Liu Tian-jian. 3D-object reconstruction based on fusion of depth images by Kinect sensor[J]. Journal of Applied Optics, 2014, 35(5): 811-816.
Citation: Guo Lian-peng, Chen Xiang-ning, Liu Bin, Liu Tian-jian. 3D-object reconstruction based on fusion of depth images by Kinect sensor[J]. Journal of Applied Optics, 2014, 35(5): 811-816.

基于Kinect传感器多深度图像融合的物体三维重建

基金项目: 

军队探索项目(7131145)

详细信息
    通讯作者:

    郭连朋(1990-),男,山东聊城人,硕士研究生,主要从事机器视觉和三维重建技术研究。 Email:guolianpeng1990@126.com

  • 中图分类号: TN911; TP391.4

3D-object reconstruction based on fusion of depth images by Kinect sensor

  • 摘要: 物体的三维重建技术一直是计算机视觉领域研究的热点问题,提出一种利用Kinect传感器获取的深度图像实现多幅深度图像融合完成物体三维重建的方法。在图像空间中对深度图像进行三角化,然后在尺度空间中融合所有三角化的深度图像构建分层有向距离场(hierarchical signed distance field),对距离场中所有的体素应用整体Delaunay三角剖分算法产生一个涵盖所有体素的凸包,并利用Marching Tetrahedra算法构造等值面,完成物体表面重建。实验结果表明,该方法利用Kinect传感器采集的不同方向37幅分辨率为640480的深度图像完成目标物体的三维重建,仅需要48 s,并且得到非常精细的重建效果。
    Abstract: 3D reconstruction of object is an interest subject in computer vision. A method for 3D reconstruction of object was proposed by integrating a set of depth maps obtained by Kinect sensor. To aggregate the contributions of the depth images at their corresponding scale, the depth images were triangulated in image space firstly, and the next step was to insert the triangulated depth images into the hierarchical signed distance field, then the global Delaunay tetrahedralization was applied to all the voxel positions yielding a convex hull that covers all the voxels, and the marching tetrahedra algorithm was applied to the resulting tetrahedral mesh for extracting the surface. Experimental results show that this method can make use of 37 depth images by Kinect sensor at different directions with the resolution of 640480 to extract high-quality surfaces, which only costs 48 s.
  • [1]Paris S, Sillion F X, Quan L. A surface reconstruction method using global graph cut optimization[J]. International Journal of Computer Vision, 2006, 66(2): 141-161.
    [2]Zaharescu A, Boyer E, Horaud R. Transformesh: a topology-adaptive mesh-based approach to surface evolution[M]. Berlin Heidelberg :Computer Vision-ACCV 2007 Springer, 2007: 166-175.
    [3]Lhuillier M, Quan L. A quasi-dense approach to surface reconstruction from uncalibrated images[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2005, 27(3): 418-433.
    [4]Bradley D, Boubekeur T, Heidrich W. Accurate multi-view reconstruction using robust binocular stereo and surface meshing[C]//2008 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Anchorage, USA: IEEE, 2008: 1-8.
    [5]Merrell P, Akbarzadeh A, Wang L, et al. Real-time visibility-based fusion of depth maps[C]//11th International Conference on Computer Vision. Rio de Janeiro, Brazil:IEEE, 2007: 1-8.
    [6]Tylecek R, Sara R. Depth map fusion with camera position refinement[C]//Computer Vision Winter Workshop. Paris, France:Computer Vision, 2009: 59-66.
    [7]Fuhrmann S, Goesele M. Fusion of depth maps with multiple scales[J]. ACM Transactions on Graphics, 2011, 30(6): 148.
    [8]Peter H, Michael K, Evan H, et al. RGB-D mapping: Using Kinect-style depth cameras for dense 3D modeling of indoor environments[J].International Journal of Robotics Research,2012,31(5):647-663.
    [9]Newcombe, Richard A, Izadi S, et al. Kinectfusion:Real-time dense surface mapping and tracking[C]//10th IEEE/ACM International Symposium on Mixed and Augmented Reality. Basel, Switzerland:IEEE, 2011:127-136.
    [10]Engelhard N, Endres F,Hess J,et al.Realtime 3D visual SLAM with a hand-held RGB-D camera[C]//24th Annual ACM Symposium on User Interface Software and Technology. Robotdalen, Sweden:Association for Computing Machinery, 2011:559-568.
    [11]Izadi S,Newcomber A,Kim D,et al.Kinectfusion:rea1-time dynamic 3D surface reconstruction and interaction [C]// ACM SIGGRAPH 2011 Talk. Vancouver,Canada:ACM SIGGRAPH,2011:449-458.
    [12]Izadi S,Kim D,Hilliges O,et al .Kinectfusion: real-time 3D reconstruction and interaction using a moving depth camera[C]//24th Annual ACM Symposium on User Interface Software and Technology.Santa Barbara,CA:ACM,2011:559-568.
    [13]Liu Xin, Xu Huarong, Hu Zhanyi, et al. GPU based fast 3D-object modeling with kinect[J]. Acta Automatica Sinica, 2012, 38(8):1288-1297.
    刘鑫,许华荣,胡占义, 等.基于 GPU和 Kinect的快速物体重建[J]. 自动化学报, 2012, 38(8):1288-1297
    [14]Yang Dongfang, Wang Shicheng, Liu Huaping, et al. Scene modeling and autonomous navigation for robots based on kinect system[J]. Robot, 2012,34(5):581-586.
    杨东方,王仕成,刘华平,等.基于Kinect系统的场景建模与机器人自主导航[J].机器人,2012,34(5):581-586.
    [15]Huang Yuqiang. Vision based mapping of a mobile robot in unknown environment[D].Nanjing: Nanjing University,2012:56-57.
    黄玉强.移动机器人在未知环境下的基于视觉系统的地图创建[D].南京:南京大学,2012:56-57.
    [16]Zhang Cuihong. 3D indoor scene reconstruction with kinect depth camera[D]. Daling: Dalian University of Technology, 2013:48.
    张翠红.基于Kinect深度相机的室内三维场景重构[D].大连:大连理工大学,2013:48.
    [17]Chen Xiaoming. Research of 3D reconstruction and filtering algorithm based on depth information of kinect[D].Shanghai: Shanghai Jiao Tong University,2013:53-54.
    陈晓明.基于 Kinect 深度信息的实时三维重建和滤波算法研究[D].上海:上海交通大学,2013:53-54.
    [18]Li Guozhen. Research and implementation of kinect based 3D reconstruction[D]. Beijing: Beijing Jiaotong University,2012:47.
    李国镇.基于Kinect的三维重建方法的研究与实现[D]. 北京:北京交通大学,2012:47.
    [19]Arieli Y, Freedman B, Machline M, et al. Depth mapping using projected patterns: US. 8150142 B2 [P]. 2012-04--03[2014-05-06].http://www.freepatent sonline.com/8150142.html.
    [20]Akio D, Koide A. An efficient method of triangulating equi-valued surfaces by using tetrahedral cells[J]. Ieice Transactions on Information and Systems, 1991, 74(1): 214-224.
    [21]Gortler S J, Grzeszczuk R, Szeliski R, et al. The lumigraph[C]//Proceedings of the 23rd annual conference on Computer graphics and interactive techniques. New Orleans : ACM, 1996: 43-54.
    [22]Akio D, Koide A. An efficient method of triangulating equi-valued surfaces by using tetrahedral cells[J]. IEICE, 1991, 74(1): 214-224.
    [23]Schaefer S, Warren J. Dual marching cubes: primal contouring of dual grids[C]//Computer Graphics and Applications. Houston, TX, USA: IEEE, 2004: 70-76.
    [24]Frahm J M, Fite G P, Gallup D, et al. Building rome on a cloudless day[M]. Berlin Heidelberg: Computer Vision-ECCV Springer, 2010: 368-381.
计量
  • 文章访问数:  2749
  • HTML全文浏览量:  174
  • PDF下载量:  378
  • 被引次数: 0
出版历程
  • 刊出日期:  2014-10-14

目录

    /

    返回文章
    返回