大相对孔径中波红外变焦系统的小型化设计

付薇, 潘国庆, 尹娜, 孙金霞

付薇, 潘国庆, 尹娜, 孙金霞. 大相对孔径中波红外变焦系统的小型化设计[J]. 应用光学, 2014, 35(5): 766-770.
引用本文: 付薇, 潘国庆, 尹娜, 孙金霞. 大相对孔径中波红外变焦系统的小型化设计[J]. 应用光学, 2014, 35(5): 766-770.
Fu Wei, Pan Guo-qing, Yin Na, Sun Jin-xia. Miniature design of large relative aperture MWIR zoom lens[J]. Journal of Applied Optics, 2014, 35(5): 766-770.
Citation: Fu Wei, Pan Guo-qing, Yin Na, Sun Jin-xia. Miniature design of large relative aperture MWIR zoom lens[J]. Journal of Applied Optics, 2014, 35(5): 766-770.

大相对孔径中波红外变焦系统的小型化设计

详细信息
    通讯作者:

    付薇(1982-),女,江苏东台人,工程师,主要从事红外光学系统设计。Email:goya@163.com

  • 中图分类号: TN206

Miniature design of large relative aperture MWIR zoom lens

  • 摘要: 大相对孔径变焦系统在像差补偿自由度较少的光学补偿式变焦系统中,通常需采用较多的镜片才能完成像差校正,导致系统体积和质量不甚理想。通过合理分配变焦参数,优化变焦系统结构,并进行非球面与衍射面复合叠加设计,完成了一个仅含8片透镜的光学补偿式变焦系统。相对孔径1∶1.8,采用320像素240像素制冷焦平面探测器,工作波段3 m ~5 m,变倍比为5,实现了30 mm/60 mm/90 mm/150 mm四档变焦,冷光阑效率100%。折叠光路后,体积约为210 mm100 mm85 mm,结构紧凑,以较少的镜片数辅以机械结构的光学补偿变焦方式有效减轻了整机质量。
    Abstract: Optical system with a large relative aperture has a larger entrance pupil than its counterparts when their focal lengths are equal,so more energy collected and further distance detected. But due to its large aperture, the aberrations increase, which requires more lenses to correct and consequently cause application restrictions by volume and weight. To tackle this issue, zoom parameters were calculated and optimized reasonably, moreover by adopting compounded aspheric and diffractive surfaces, a reimaging zoom midwave infrade (MWIR) system with only 8 lenses was designed. The F number is 1.8 and the spectrum is 3 m~5 m. For a 320240 pixels detector with cooled focal plane array(FPA), the magnification is 5,and the four fields of view (FOVs) are 30 mm/60 mm/90 mm/150 m. The optical aperture stop matches the detector-s and the cold stop efficiency is equal to 100%. Two reflective mirrors are applied to fold the optical path, giving a compact volume of around 210 mm100 mm85 mm. Less lenses and simple zoom machinery effectively reduce the weight.
  • [1]Arthur Cox. Optically compensated infrared zoom   lens having a single movable lens carriage and no aspheric lenses,US: 7,092,150 B1 [P].2006-05-01.
    [2]Chen Lyuji,Li Ping. Optically compensated MWIR zoom system[J]. Infrared Technology, 2010,32(11):645-648.
    陈吕吉,李萍. 光学补偿中波红外变焦光学系统设计[J].红外技术,2010,32(11):645-648.
    [3]Tao Liang,Zhao Jinsong. Optically compensated LWIR zoom objective with magnification of 5×[J]. Infrared Technology, 2008,30(4):210-213.
    陶亮,赵劲松. 5×光学补偿长波红外连续变焦物镜系统[J].红外技术,2008,30(4):210-213.
    [4]Luo Shoujun,He Wubin,Li Wenhu,et al. Design of middle infrared continuous zoom optical system with a large FPA[J]. Optics and Precision Engineering,2012,20(10):21172122.
    骆守俊,何伍斌,李文虎,等.大面阵中波红外连续变焦光学系统设计[J].光学·精密工程,2012,20(10):2117-2122.
    [5]Paiez G, Scholim S. Relationship between temperature-dependent emissivity and gray-body incidence detected with a quantum detector[J]. SPIE,1998, 3437: 407-415.
    [6]Scherr L M, Orlando H J, Hall J T, et al. Narcissus consideration in optical designs for infrared staring arrays[J].SPIE,1996, 2864:442-452.
    [7]Tao Chunkan. Zoom focus optic system design[M]. Beijing: National Defense Industry Press,1988.
    陶纯堪.变焦距光学系统设计[M].北京:国防工业出版社,1988.
计量
  • 文章访问数:  1751
  • HTML全文浏览量:  142
  • PDF下载量:  215
  • 被引次数: 0
出版历程
  • 刊出日期:  2014-10-14

目录

    /

    返回文章
    返回