[1]Lee T, Lee J, Park C. Characterization of parylene deposition process for the passivation of organic light emitting diodes [J]. Korean J. Chem. Eng., 2002, 19(4): 722-727. [2]Kim N, Potscavage W J, Domercq J B, et al. A hybrid encapsulation method for organic electronics [J]. Appl. Phys. Lett., 2009, 94(16): 163308-1-3. [3]Yoon Y S, Park H Y, Lim Y C, et al. Effects of parylene buffer layer on flexible substrate in organic light emitting diode [J]. Thin Solid Films, 2006, 513: 258-263. [4]Sohna S, Kima K, Khoa S, et al. Effects of plasma polymerized para-xylene intermediate layers on characteristics of flexible organic light emitting diodes fabricated on polyethylene terephthalate substrates [J]. Journal of Alloys and Compounds, 2008, 449: 191-195. [5]Yamashita K, Mori T, Mizutani T. Encapsulation of organic light-emitting diode using thermal chemical-vapour-deposition polymer film [J]. J. Phys. D: Appl. Phys., 2001, 34 : 740-743. [6]Najafov H, Lee B, Zhou Q, et al. Observation of long-range exciton diffusion in highly ordered organic semiconductors [J]. Nature Materials, 2010, 9: 938-943. [7]Ou Y, Wang P I, Vanamurthy L H, et al. Thermal stability study of pore sealing using parylene N [J]. Journal of the Electrochemical Society, 2008, 155(10): H819-H822. [8]Jeong Y S, Ratier B, Moliton A, et al. UV-visible and infrared characterization of poly(p-xylylene) films for waveguide applications and OLED encapsulation [J]. Synthetic Metals, 2002, 127: 189-193. [9]Ke L, Kumar R S, Zhang K, et al. Organic light emitting devices performance improvement by inserting thin parylene layer [J]. Synthetic Metals, 2004, 140: 295-299. [10]Hu Y M, He Y, Chen X Q, et al. Obvious efficiency enhancement of organic light-emitting diodes by parylene-N buffer layer [J]. Appl. Phys. Lett., 2012, 100: 163303. [11]Hu Y M, He Y, Chen X Q, et al. Insertion of parylene-N films in electron transport layer: An effective approach for efficiency improvement of organic light emitting diodes [J]. J. Appl. Phys., 2012, 112: 104505. [12]Ganguli S, Agrawal H, Wang B, et al. Improved growth and thermal stability of Parylene films [J]. J. Vac. Sci. Technol., 1997, 15(6): 3138-3142. [13]Yang R, Ganguli S, Karcz J, et al. High deposition rate parylene films [J]. J. Cryst. Growth, 1998, 183: 385-390. [14]Bae I S, Cho S H, Lee S B, et al. Growth of plasma-polymerized thin films by PECVD method and study on their surface and optical characteristics [J]. Surface & Coatings Technology, 2005, 193: 142-146. [15]Achyuta A K H, White A J, Lewis H G P, et al. Incorporation of linear spacer molecules in vapor-deposited silicone polymer thin films [J]. Macromolecules, 2009, 42: 1970-1978. [16]Kahouli A, Sylvestre A, Ortega L, et al. Structural and dielectric study of parylene C thin films [J]. Appl. Phys. Lett., 2009, 94(15): 152901-1-3. [17]Zhao J M, Zhang S T, Wang X J, et al. Dual role of LiF as a hole-injection buffer in organic light-emitting Diodes [J]. Appl. Phys. Lett., 2004, 84: 2913. [18]Senkevich J J, Wang P I. Molecular layer chemistry via parylenes[J]. Chem. Vap. Deposition, 2009, 15: 91-94. [19]Mallikarjunan A, Murarka S P, Lu T M. Metal drift behavior in low dielectric constant organosiloxane polymer [J]. Appl. Phys. Lett., 2001, 79(12): 1855-1857. [20]Zhang S T, Wang Z J, Zhao J M, et al. Electron blocking and hole injection: The role of N,N′Bis(naphthalen-1-y)N, N′bis(phenyl) benzidine in organic light-emitting devices [J]. Appl. Phys. Lett., 2004, 84(15): 2916-2918.
|