聚对二甲苯薄膜的制备及其在有机电致发光二极管中的应用研究

胡永茂, 李汝恒, 何鋆, 张学清, 李茂琼, 朱艳

胡永茂, 李汝恒, 何鋆, 张学清, 李茂琼, 朱艳. 聚对二甲苯薄膜的制备及其在有机电致发光二极管中的应用研究[J]. 应用光学, 2014, 35(4): 663-669.
引用本文: 胡永茂, 李汝恒, 何鋆, 张学清, 李茂琼, 朱艳. 聚对二甲苯薄膜的制备及其在有机电致发光二极管中的应用研究[J]. 应用光学, 2014, 35(4): 663-669.
Hu Yong-mao, Li Ru-heng, He Yun, Zhang Xue-qing, Li Mao-qiong, Zhu Yan. Preparation of Parylene-N ultrathin films and their applications in organic light emitting diodes[J]. Journal of Applied Optics, 2014, 35(4): 663-669.
Citation: Hu Yong-mao, Li Ru-heng, He Yun, Zhang Xue-qing, Li Mao-qiong, Zhu Yan. Preparation of Parylene-N ultrathin films and their applications in organic light emitting diodes[J]. Journal of Applied Optics, 2014, 35(4): 663-669.

聚对二甲苯薄膜的制备及其在有机电致发光二极管中的应用研究

详细信息
    作者简介:

    胡永茂(1974-),男,云南洱源人,博士,副教授,主要从事半导体功能材料与器件研究工作。 Email:yongmaohu@163.com

  • 中图分类号: TN202;O469

Preparation of Parylene-N ultrathin films and their applications in organic light emitting diodes

  • 摘要: 使用自制的分子束源制备了聚对二甲苯(ParyleneN,PPXN)薄膜。通过对该分子束源的设计和不断优化,PPXN薄膜可以在室温、10-3 Pa的较低反应压强下以0.01 nm/s~0.02 nm/s的速率沉积聚合。用红外透射光谱和原子力显微镜测量了PPXN薄膜的成分和表面形貌。结果表明,所制备的薄膜成分为PPXN,薄膜呈波浪状、无尖刺的表面形貌。准确控制的PPXN薄膜在有机电致发光二极管中用作缓冲层,对载流子的注入和传输进行调控,有效地改善了器件内部的载流子平衡。最优化结构的器件较未插入PPXN缓冲层的器件,电流效率提高80%以上。
    Abstract: Ultrathin poly-p-xylylene (PPXN) films were prepared by using a home-made Knudsen cell (KC). By special design and optimization of the KC, the growth rate was well controlled in the range of 0.01nm/s -0.02 nm/s at room temperature in a relatively lower reaction pressure of 10-3 Pa. The PPXN films were identified by infrared (IR) spectra. The morphology of PPXN films were measured by atomic force microscope (AFM). It was resulted that the PPXN surface showed a spike-free undulated morphology. The well controlled PPXN thin films were used as buffers in organic light emitting diodes to control carrier injection and transport, and improvements of more than 80% in device current efficiency were achieved.
  • [1]Lee T, Lee J, Park C. Characterization of parylene deposition process for the passivation of organic light emitting diodes [J]. Korean J. Chem. Eng., 2002, 19(4): 722-727.
    [2]Kim N, Potscavage W J, Domercq J B, et al. A hybrid encapsulation method for organic electronics [J]. Appl. Phys. Lett., 2009, 94(16): 163308-1-3.
    [3]Yoon Y S, Park H Y, Lim Y C, et al. Effects of parylene buffer layer on flexible substrate in organic light emitting diode [J]. Thin Solid Films, 2006, 513: 258-263.
    [4]Sohna S, Kima K, Khoa S, et al. Effects of plasma polymerized para-xylene intermediate layers on characteristics of flexible organic light emitting diodes fabricated on polyethylene terephthalate substrates [J]. Journal of Alloys and Compounds, 2008, 449: 191-195.
    [5]Yamashita K, Mori T, Mizutani T. Encapsulation of organic light-emitting diode using thermal chemical-vapour-deposition polymer film [J]. J. Phys. D: Appl. Phys., 2001, 34 : 740-743.
    [6]Najafov H, Lee B, Zhou Q, et al. Observation of long-range exciton diffusion in highly ordered organic semiconductors [J]. Nature Materials, 2010, 9: 938-943.
    [7]Ou Y, Wang P I, Vanamurthy L H, et al. Thermal stability study of pore sealing using parylene N [J]. Journal of the Electrochemical Society, 2008, 155(10): H819-H822.
    [8]Jeong Y S, Ratier B, Moliton A, et al. UV-visible and infrared characterization of poly(p-xylylene) films for waveguide applications and OLED encapsulation [J]. Synthetic Metals, 2002, 127: 189-193.
    [9]Ke L, Kumar R S, Zhang K, et al. Organic light emitting devices performance improvement by inserting thin parylene layer [J]. Synthetic Metals, 2004, 140: 295-299.
    [10]Hu Y M, He Y, Chen X Q, et al. Obvious efficiency enhancement of organic light-emitting diodes by parylene-N buffer layer [J]. Appl. Phys. Lett., 2012, 100: 163303.
    [11]Hu Y M, He Y, Chen X Q, et al. Insertion of parylene-N films in electron transport layer: An effective approach for efficiency improvement of organic light emitting diodes [J]. J. Appl. Phys., 2012, 112: 104505.
    [12]Ganguli S, Agrawal H, Wang B, et al. Improved growth and thermal stability of Parylene films [J]. J. Vac. Sci. Technol., 1997, 15(6): 3138-3142.
    [13]Yang R, Ganguli S, Karcz J, et al. High deposition rate parylene films [J]. J. Cryst. Growth, 1998, 183: 385-390.
    [14]Bae I S, Cho S H, Lee S B, et al. Growth of plasma-polymerized thin films by PECVD method and study on their surface and optical characteristics [J]. Surface & Coatings Technology, 2005, 193: 142-146.
    [15]Achyuta A K H, White A J, Lewis H G P, et al. Incorporation of linear spacer molecules in vapor-deposited silicone polymer thin films [J]. Macromolecules, 2009, 42: 1970-1978.
    [16]Kahouli A, Sylvestre A, Ortega L, et al. Structural and dielectric study of parylene C thin films [J]. Appl. Phys. Lett., 2009, 94(15): 152901-1-3.
    [17]Zhao J M, Zhang S T, Wang X J, et al. Dual role of LiF as a hole-injection buffer in organic light-emitting Diodes [J]. Appl. Phys. Lett., 2004, 84: 2913.
    [18]Senkevich J J, Wang P I. Molecular layer chemistry via parylenes[J]. Chem. Vap. Deposition, 2009, 15: 91-94.
    [19]Mallikarjunan A, Murarka S P, Lu T M. Metal drift behavior in low dielectric constant organosiloxane polymer [J]. Appl. Phys. Lett., 2001, 79(12): 1855-1857.
    [20]Zhang S T, Wang Z J, Zhao J M, et al. Electron blocking and hole injection: The role of N,N′Bis(naphthalen-1-y)N, N′bis(phenyl) benzidine in organic light-emitting devices [J]. Appl. Phys. Lett., 2004, 84(15): 2916-2918.
     
计量
  • 文章访问数:  1563
  • HTML全文浏览量:  105
  • PDF下载量:  217
  • 被引次数: 0
出版历程
  • 刊出日期:  2014-07-14

目录

    /

    返回文章
    返回