圆结构光视觉三维点管道缺陷检测及重构

王颖, 韩静文, 金翠云, 张艳辉

王颖, 韩静文, 金翠云, 张艳辉. 圆结构光视觉三维点管道缺陷检测及重构[J]. 应用光学, 2014, 35(3): 441-445.
引用本文: 王颖, 韩静文, 金翠云, 张艳辉. 圆结构光视觉三维点管道缺陷检测及重构[J]. 应用光学, 2014, 35(3): 441-445.
WANG Ying, HAN Jing-wen, JIN Cui-yun, ZHANG Yan-hui. In-pipe defects detection and reconstruction based on circle structured light[J]. Journal of Applied Optics, 2014, 35(3): 441-445.
Citation: WANG Ying, HAN Jing-wen, JIN Cui-yun, ZHANG Yan-hui. In-pipe defects detection and reconstruction based on circle structured light[J]. Journal of Applied Optics, 2014, 35(3): 441-445.

圆结构光视觉三维点管道缺陷检测及重构

详细信息
    通讯作者:

    王颖(1969-),女,天津人,博士,副教授,主要从事机器视觉和光电精密测试技术研究工作。 Email:wangying@mail.buct.edu.cn

  • 中图分类号: TN911.73;TP391.41

In-pipe defects detection and reconstruction based on circle structured light

  • 摘要: 管道内表面的缺陷检测对于保证介质运输安全,避免泄漏和爆炸事故非常重要。在分析三维点分布几何特征的基础上,对基于视觉检测获得的管道内表面三维点,通过判断同一圆周上相邻点法线夹角变化检测管道内表面的凹凸缺陷,采用空间点相邻三角平面法线加权平均获取空间点的法线。依据三维点呈圆周分布的特点,采用相邻圆周上点顺次连接进行快速三角剖分。基于上述方法对实际测量的管道内表面三维点和仿真三维点分别进行了凹凸缺陷检测和三维重构。该方法能实现径向变化小于0.1 mm的管道凹凸缺陷的检测和识别,三维测量精度为0.081 mm。
    Abstract: Pipe inner surface defects detection is very important to ensure transmission safety and avoid leaking and explosion accidents. Based on the analysis of the geometry characteristic of the 3D points distribution, for the pipe inner side 3D data which are obtained based on circle structured light machine vision technology, a defect detection method about pipe inner side is proposed by comparing the normal vector angle between adjacent points which are on the same circumference. The point normal vector is calculated by the weighted average of adjacent triangles normal vectors. As the 3D points distribute circumferentially, the adjacent points are adopted to do fast triangulation. By using above method, we conducted defects detection and 3D reconstruction of measured and simulated 3D points inside the pipe, respectively. Results show that the method can detect and identify pipe defects of less than 0.1 mm racial variation with 0.081 mm accuracy.
  • [1]李成凯,孙永兴,李潇菲,等.在线管道缺陷常用检测方法分析[J].管道技术与设备,2009,6:24-26.
    LI Cheng-kai,SUN Yong-xing,LI Xiao-fei,et al. Analysis of commonly used detection approaches about defects in inspection of online pipeline[J].Pipeline Technique and Equipmemt,2009,6:24-26.(in Chinese with an English abstract)
    [2]马云修,刘宝余,孙旭.漏磁检测技术在长输管道维护中的应用[J].石油化工腐蚀与防护,2012,29(11):45-50.
    MA Yun-xiu,LIU Bao-yu,SUN Xu,Application of magnetic flux leakage detection technology in maintenance of long-distance pipelines[J].Corrosion&Protection in Petrochemical Industry,2012,29(11):45-50.(in Chinese with an English abstract)
    [3]辛伟,丁克勤,黄冬林,等.带保温层管道腐蚀缺陷的脉冲涡流检测技术仿真[J].无损检测,2009,31(7):509-512.
    XIN Wei,DING Ke-qin,HUANG Dong-lin, et al. Pulse eddy current detection simulation of the pipe corrosion with insulation layer[J].Non-destructive Technology,2009,31(7):509-512.(in Chinese with an English abstract)
    [4]王明泉,宋文爱,韩焱.管道锈蚀射线检测技术[J].测试技术学报,2002,16(3):203-206.
    WANG Ming-quan,SONG Wen-ai,HAN Yan.The radiographic detecting technology of the pipeli ne rust[J]. Journal of Test and Measurement Technology, 2002,16(3):203-206.(in Chinese with an English abstract)
    [5]GOMEZ F, ALTHOEFER K, SENEVIRAYNE L D.  Modeling of ultrasound sensor for pipe inspection[J]. IEEE, 2003, 2(9): 2555-2560.
    [6]王颖,王建林,细管道内表面光电检测方法研究[J].应用光学,2008,29(5):735-739.
    WANG Ying, WANG Jian-lin. Optoelectronic inspection of in-pipe surfaces[J]. Journal of Applied Optics, 2008,29(5):735-739.(in Chinese with an English abstract)
     [7]王一,程大林,任永杰,等. 透射式激光扫描测径技术 [J].光电工程,2011,38(7):65-68.
    WANG Yi, CHENG Da-lin, REN Yong-jie, et al. Transmission laser-scanning diameter inspection technology [J]. Opto-Electronic Engineering, 2011,38(7):65-68.(in Chinese with an English abstract)
    [8]谢静,杨晓燕,徐长航,等.基于形态学方法的工件表面缺陷红外热像检测技术[J].中国石油大学学报,2012,36(3):146-150.
    XIE Jing,YANG Xiao-yan,XU Chang-hang, et al.Infrared thermal images detecting surface defect of steel specimen based on morphological algorithm[J].Journal of China University of Petroleum,2012,36(3):146-150.(in Chinese with an English abstract)
     [9]OSAMA M, TARIQ S. Automated detection of surface defects in water and sewer pipes[J]. Automation in Construction, 1999, 8(5): 581-588.
     [10]DURAN O, ALTHOEFER K, SENEVIRATNE L D, et al. Automated pipe defect detection and categorization using camera/laser-based profiler and artificial neural network[J]. IEEE Transactions on Automation Science and Engineering, 2007, 4(1): 118-126.
     [11]孙存亮.空间散乱点曲面重构的三角剖分技术研究[D].南京:南京航空航天大学,2009.
    SUN Cun-liang. The study of triangulation about space scattered points[D].Nanjing: Nanjing University of Aeronautics and Astronautics, 2009.(in Chinese with an English abstract)
     [12]YANG Zhou-wang, SE Yong-hwa, KIM Tae-wan. Adaptive triangular-mesh reconstruction by mean-curvature-based refinement from point clouds using a moving parabolic approximation[J]. Computer-Aided Design, 2010(42):2-17.
计量
  • 文章访问数:  2078
  • HTML全文浏览量:  178
  • PDF下载量:  214
  • 被引次数: 0
出版历程
  • 刊出日期:  2014-05-14

目录

    /

    返回文章
    返回