一种可移动超分辨成像系统的制备及其性质研究

刘帅, 叶燃, 曹玲玲

刘帅, 叶燃, 曹玲玲. 一种可移动超分辨成像系统的制备及其性质研究[J]. 应用光学, 2014, 35(3): 427-431.
引用本文: 刘帅, 叶燃, 曹玲玲. 一种可移动超分辨成像系统的制备及其性质研究[J]. 应用光学, 2014, 35(3): 427-431.
LIU Shuai, YE Ran, CAO Ling-ling. Fabrication of removable superlens and research of its characteristics[J]. Journal of Applied Optics, 2014, 35(3): 427-431.
Citation: LIU Shuai, YE Ran, CAO Ling-ling. Fabrication of removable superlens and research of its characteristics[J]. Journal of Applied Optics, 2014, 35(3): 427-431.

一种可移动超分辨成像系统的制备及其性质研究

详细信息
    通讯作者:

    刘帅(1990-),男,安徽合肥人,硕士研究生,主要从事纳米光学超分辨成像研究。 Email: yeyonghong@njnu.edu.cn

  • 中图分类号: TN216

Fabrication of removable superlens and research of its characteristics

  • 摘要: 基于浸没透镜设计了一种超分辨成像系统,利用SU-8光刻胶和直径为4.87 m的微球实现纳米级别的超分辨成像。介绍微球成像放大率的求解方法,并通过软件模拟了超分辨成像系统的焦距。通过改变SU-8胶的厚度(从3.4 m到0),系统的放大率也随之改变(放大率从1.6x到2.6x)。实验表明:SU-8胶的厚度对微球放大率有直接影响,通过该系统可以在普通光学显微镜下观察到蓝光光碟条纹。
    Abstract: Based on the solid immersion lenses (SILs), a new super-resolution system with nanometer scale was designed by using the SU-8 photoresist and a 4.87 m diameter spherical lens. The computation process of the magnification was introduced. The focal distance was simulated by softwares in addition. By changing the thickness of the SU-8 layer from 3.4 m to 0, the system-s magnification was changed from 1.6x to 2.6x. Experiment results show that the thickness of SU-8 photoresist influences the magnification directly,the stripe patterns of the blu-ray disc can be observed in ordinary optical microscopes by using the superresolution system.
  • [1]PENDRY J B. Negative refraction makes a perfect lens[J]. Physical review letters, 2000, 85(18):3966.
    [2]FANG N, LEE H, SUN C, et al. Sub–diffraction-limited optical imaging with a silver superlens[J]. Science, 2005, 308(5721): 534-537.
    [3]WANG F, LIU X. Upconversion multicolor fine-tuning: visible to near-infrared emission from lanthanide-doped NaYF4 nanoparticles[J]. Journal of the American Chemical Society, 2008, 130(17): 5642-5643.
    [4]CASSE B D F, LU W T, HUANG Y J, et al. Super-resolution imaging using a three-dimensional metamaterials nanolens[J]. Applied Physics Letters, 2010, 96(2): 023114.
    [5]ZHUANG X. Nano-imaging with STORM[J]. Nature photonics, 2009, 3(7): 365.
    [6]RHO J, YE Z, XIONG Y, et al. Spherical hyperlens for two-dimensional sub-diffractional imaging at visible frequencies[J]. Nature communications, 2010(1): 143.
    [7]Van PUTTEN E G, AKBULUT D, BERTOLOTTI J, et al. Scattering lens resolves sub-100 nm structures with visible light[J]. Physical review letters, 2011, 106(19): 193905.
    [8]ROY T, ROGERS E T F, ZHELUDEV N I. Sub-wavelength focusing meta-lens[J]. Optics express, 2013, 21(6): 7577-7582.
    [9]LU D, LIU Z. Hyperlenses and metalenses for far-field super-resolution imaging[J]. Nature Communications, 2012(3):1205.
    [10]LEMOULT F, FINK M, LEROSEY G. A polychromatic approach to farfield superlensing at visible wavelengths[J]. Nature Communications, 2012(3): 889.
    [11]FLETCHER D A, CROZIER K B, QUATE C F, et al. Near-field infrared imaging with a microfabricated solid immersion lens[J]. Applied Physics Letters, 2000, 77(14): 2109-2111.
    [12]WANG Z, GUO W, LI L, et al. Optical virtual imaging at 50 nm lateral resolution with a white-light nanoscope[J]. Nature Communications, 2011(2): 218.
    [13]HAO X, KUANG C, LI Y, et al. Hydrophilic microsphere based mesoscopic-lens microscope (MMM)[J].Optics Communications, 2012, 285(20): 4130-4133.
    [14]HAO X, LIU X, KUANG C, et al. Far-field super-resolution imaging using near-field illumination by micro-fiber[J]. Applied Physics Letters, 2013, 102(1): 013104.
    [15]王淑莹,章海军,张冬仙.基于微球透镜的任选区高分辨光学显微成像新方法研究[J]. 物理学报,2013,62(3): 034207.
        WANG Shu-ying,ZHANG Hai-jun,ZHANG Dong-xian. Location-free optical microscopic imaging method with high-resolution based on microsphere superlenses[J].Acta Physica Sinica, 2013,62(3):034207.(in Chinese with an English abstract)
    [16]HAO X, KUANG C, LIU X, et al. Microsphere based microscope with optical super-resolution capability[J]. Applied Physics Letters, 2011, 99(20): 203102.
    [17]DARAFSHEH A, LIMBEROPOULOS N I, LUPU A, et al. Filtering of radially polarized beams by microsphere-chain waveguides[J]. SPIE, 2013,8627: 86270D-86270D-7.
    [18]YANG S, TAFLOVE A, BACKMAN V. Experimental confirmation at visible light wavelengths of the backscattering enhancement phenomenon of the photonic nanojet[J]. Optics Express, 2011, 19(8): 7084-7093.
    [19]YE R, YE Y H, MA H F, et al. Experimental far-field imaging properties of a~ 5μm diameter spherical lens[J]. Optics Letters, 2013, 38(11): 1829-1831.
     [20]VLAD A, HUYNEN I, MELINTE S. Wavelength-scale lens microscopy via thermal reshaping of colloidal particles[J]. Nanotechnology, 2012, 23(28): 285708.
计量
  • 文章访问数:  2167
  • HTML全文浏览量:  139
  • PDF下载量:  258
  • 被引次数: 0
出版历程
  • 刊出日期:  2014-05-14

目录

    /

    返回文章
    返回