NO2分子高灵敏度痕量探测技术研究

董美丽, 徐学哲, 赵卫雄, 顾学军, 胡长进, 盖艳波, 高晓明, 黄伟, 张为俊

董美丽, 徐学哲, 赵卫雄, 顾学军, 胡长进, 盖艳波, 高晓明, 黄伟, 张为俊. NO2分子高灵敏度痕量探测技术研究[J]. 应用光学, 2014, 35(2): 264-269.
引用本文: 董美丽, 徐学哲, 赵卫雄, 顾学军, 胡长进, 盖艳波, 高晓明, 黄伟, 张为俊. NO2分子高灵敏度痕量探测技术研究[J]. 应用光学, 2014, 35(2): 264-269.
DONG Mei-li, XU Xue-zhe, ZHAO Wei-xiong, GU Xue-jun, HU Chang-jin, GAI Yan-bo, GAO Xiao-ming, HUANG Wei, ZHANG Wei-jun. High-sensitive trace detection of NO2 with broadband cavity-enhanced spectroscopy[J]. Journal of Applied Optics, 2014, 35(2): 264-269.
Citation: DONG Mei-li, XU Xue-zhe, ZHAO Wei-xiong, GU Xue-jun, HU Chang-jin, GAI Yan-bo, GAO Xiao-ming, HUANG Wei, ZHANG Wei-jun. High-sensitive trace detection of NO2 with broadband cavity-enhanced spectroscopy[J]. Journal of Applied Optics, 2014, 35(2): 264-269.

NO2分子高灵敏度痕量探测技术研究

详细信息
    通讯作者:

    董美丽(1985-),女,河北唐山人,博士,主要从事光谱测量技术研究。 Email:mldong2012@gmail.com

  • 中图分类号: TN247; O59

High-sensitive trace detection of NO2 with broadband cavity-enhanced spectroscopy

  • 摘要: 搭建了一台基于蓝光LED的非相干宽带腔增强吸收光谱系统,并将其应用于NO2分子的高灵敏度痕量探测研究。在3 s采样时间下, 系统探测灵敏度为3.210-9 cm-1(1 ),对应NO2的探测极限约为187 pmol/mol。利用Allan方差对系统最佳采样时间及系统稳定性进行分析,当采样时间延长至30 s时,系统的探测极限可提高至44 pmol/mol。将该系统应用于实际大气中NO2的连续测量,其测量结果与商业化NOx分析仪(Thermo 42i)进行了比对测试。
    Abstract: A blue light emitting diode (LED) based incoherent broadband cavity-enhanced absorption spectroscopy (IBBCEAS) instrument was set up for high sensitive detection of NO2 molecule. A detection sensitivity of 3.210-9 cm-1 (1, 300 ms integrating time, and 10 times average) was demonstrated on the basis of absorption spectroscopy of NO2, corresponding to a minimum detection concentration of about 187 pmol/mol for NO2. The measurement sensitivity and optimum acquisition time of the IBBCEAS system were evaluated using Allan variance analysis. The detection limit of 44 pmol/mol for NO2 was achieved with an optimum acquisition time of 30 s. The IBBCEAS measured NO2 data in ambient air were compared to the values measured with an online NOx analyzer (Thermo 42i). Result shows a good agreement between the NOx analyzer and the IBBCEAS.
  • [1]FINLAYSON PITTS B J, WINGEN L M, SUMNER A L, et al. The heterogeneous hydrolysis of NO2 in laboratory systems and in outdoor and indoor atmospheres: An integrated mechanism[J]. Physical Chemistry Chemical Physics, 2003, 5: 223-242.
    [2]RYERSON T B, WILLIAMS E J , FEHSENFELD F C. An efficient photolysis system for fast-response NO2 measurements[J]. Journal of Geophysical Research, 2000, 105: 26447-26461.
    [3]VILLENA G, BEJAN I, KURTENBACH R, et al. Interferences of commercial NO2 instruments in the urban atmosphere and in a smog chamber[J]. Atmospheric Measurement Techniques, 2012, 5: 149-159.
    [4]SCHIFF H I, MACKAY G I, CASTLEDINE C, et al. Atmospheric measurements of nitrogen dioxide with a sensitive luminol instrument[J]. Water, Air, and Soil Pollution, 1986, 30: 105-114.
    [5]THORNTON J A, WOOLDRIDGE P J, COHEN R C. Atmospheric NO2:in situ laser-induced fluorescence detection at parts per trillion mixing ratios[J]. Analytical Chemistry, 2000, 72: 528-539.
    [6]GARNICA R M, APPEL M F, EAGAN L, et al. A REMPI method for the ultrasensitive detection of NO and NO2 using atmospheric pressure laser ionization mass spectrometry[J]. Analytical Chemistry, 2000, 72: 5639-5646.
    [7]SCHIFF H I, KARECKI D R, HARRIS G W, et al. A tunable diode laser system for aircraft measurements of trace gases[J]. Journal of Geophysical Research, 1990, 95: 10147-10153.
    [8]FIEDLER S E, HESE A , RUTH A A. Incoherent broad-band cavity-enhanced absorption spectroscopy[J]. Chemical Physics Letters, 2003, 371: 284-294.
    [9]BALL S M, LANGRIDGE J M , JONES R L. Broadband cavity enhanced absorption spectroscopy using light emitting diodes[J]. Chemical Physics Letters, 2004, 398: 68-74.
    [10]GHERMAN T, VENABLES D S, VAUGHAN S, et al. Incoherent broadband cavity-enhanced absorption spectroscopy in the near-ultraviolet: application to HONO and NO2 [J]. Environmental Science & Technology, 2008, 42: 890-895.
    [11]LANGRIDGE J M, BALL S M , JONES R L. A compact broadband cavity enhanced absorption spectrometer for detection of atmospheric NO2 using light emitting diodes[J]. Analyst, 2006, 131: 916-922.
    [12]KENNEDY O J, OUYANG B, LANGRIDGE J M, et  al. An aircraft based three channel broadband cavity enhanced absorption spectrometer for simultaneous measurements of NO3, N2O5 and NO2[J]. Atmospheric Measurement Techniques, 2011, 4: 1759-1776.
    [13]董磊. 基于腔增强吸收光谱的污染气体检测研究[D]. 太原:山西大学, 2007.
    DONG Lei. Research on polluted gas detection based on cavity enhanced absorption spectroscopy[D]. Taiyuan: Shanxi University, 2007. (in Chinese)
    [14]吴涛, 赵卫雄, 李劲松,等. 基于LED的非相干宽带腔增强吸收光谱技术[J]. 光谱学与光谱分析, 2008, 28: 2469-2472.
    WU Tao, ZHAO Wei-xiong, LI Jin-song, et al. Incoherent broadband cavity enhanced absorption spectroscopy based on LED[J]. Spectroscopy and Spectral Analysis, 2008, 28: 2469 -2472. (in Chinese with an Englishi abstract).
    [15]WU Tao, ZHAO Wei-xiong, CHEN Wei-dong, et al. Incoherent broadband cavity enhanced absorption spectroscopy for in situ measurements of NO2 with a blue light emitting diode[J]. Applied Physics B-lasers and Optics, 2009, 94: 85-94.
    [16]董美丽, 赵卫雄, 程跃, 等. 宽带腔增强吸收光谱技术应用于痕量气体探测及气溶胶消光系数测量[J]. 物理学报, 2012, 61: 060702.
    DONG Mei-li, ZHAO Wei-xiong, CHENG Yue, et al. Incoherent broadband cavity enhanced absorption spectroscopy for trace gases detection and aerosol extinction measurement[J]. Acta Physica Sinica, 2012, 61: 060702 (in Chinese with an Englishi abstract)
    [17]吕国文. 基于IBBCEAS的污染气体在线检测系统研究[D]. 广州:华南理工大学, 2010.
    LV Guo-wen, Study on in-situ detection system of pollution based on IBBCEAS[D]. Guangzhou: South China University of Technolpgy, 2010. (in Chinese).
    [18]凌六一, 秦敏, 谢品华, 等. 基于LED光源的非相干宽带腔增强吸收光谱技术探测HONO和NO2[J]. 物理学报, 2012, 61: 140703.
    LING Liu-yi, QIN Min, XIE Pin-hua, et al. Incoherent broadband cavity enhanced absorption spectroscopy for measurements of HONO and NO2 with a LED pptical source[J]. Acta Physica Sinica,2012, 61:140703 (in Chinese with an Englishi abstract)
    [19]凌六一, 谢品华, 秦敏, 等. 开放光路非相干宽带腔增强吸收光谱技术测量大气NO2[J]. 光学学报, 2013, 33: 0130002.
    LING Liu-yi, XIE Pin-hua, QIN Min, et al. Open-path incoherent broadband cavity enhanced absorption spectroscopy for measurements of atmospheric NO2[J]. Acta Physica Sinica, 2013, 33: 0130002. (in Chinese with an Englishi abstract).
    [20]ZHAO Wei-xiong, DONG Mei-li, CHEN Wei-dong, et al. Wavelength-resolved optical extinction measurements of aerosols using broad-band cavity-enhanced absorption spectroscopy over the spectral range of 445-480 nm[J]. Analytical Chemistry, 2013, 85: 2260-2268.
    [21]DONG Mei-li, ZHAO Wei-xiong, HUANG Ming-qiang, et al. Near-ultraviolet incoherent broadband cavity enhanced absorption spectroscopy for OClO and CH2O in Cl-initiated photooxidation experiment[J]. Chinese Journal Of Chemical Physics, 2013, 26: 133-139.
    [22]董美丽,赵卫雄,顾学军,等. 宽带腔增强吸收光谱技术应用于NO2高灵敏度探测及气溶胶消光系数测量研究[C].沈阳:中国气象学会,2012.
    DONG Mei-li, ZHAO Wei-xiong, GU Xue-jun, et al. Incoherent broadband cavity enhanced absorption spectroscopy for NO2 detection and aerosol extinction measurement[C]. Shenyang:Chinese Meteorological Society,2012. (in Chinese)
    [22]董美丽, 赵卫雄, 顾学军, 等. 宽带腔增强吸收光谱技术应用于NO2高灵敏度探测及气溶胶消光系数测量研究[C]. 中国气象学会.第29届中国气象学会年会论文集.缺出版地:出版者, 2012.
    DONG Mei-li, ZHAO Wei-xiong, GU Xue-jun, et al. Incoherent broadband cavity enhanced absorption spectroscopy for NO2 detection and aerosol extinction measurement[C]. 缺论文集的责任人.The twenty-ninth annual meeting of the China Meteorological Society, 缺出版地:出版者,2012. (in Chinese)
    [23]WASHENFELDER R A, LANGFORD A O, FUCHS H, et al. Measurement of glyoxal using an incoherent broadband cavity enhanced absorption spectrometer[J]. Atmospheric Chemistry and Physics, 2008, 8: 7779-7793.
    [24]NAUS H, UBACHS W. Experimental verification of rayleigh scattering cross sections[J]. Optics Letters, 2000, 25: 347-349.
    [25]SNEEP M , UBACHS W. Direct measurement of the rayleigh scattering cross section in various gases[J]. Journal Of Quantitative Spectroscopy & Radiative Transfer, 2005, 92: 293-310.
    [26]VANDAELE A C, HERMANS C, FALLY S, et al. High-resolution Fourier transform measurement of the NO2 visible and near-infrared absorption cross sections: Temperature and pressure effects[J]. Journal of Geophysical Research, 2002, 107: 4348.
    [27]GREENBLATT G D, ORLANDO J J, BURKHOLDER J B, et al. Absorption measurements of oxygen between 330 and 1140 nm[J]. Journal of Geophysical Research, 1990, 95: 18577-18582.
计量
  • 文章访问数:  2452
  • HTML全文浏览量:  120
  • PDF下载量:  273
  • 被引次数: 0
出版历程
  • 刊出日期:  2014-03-14

目录

    /

    返回文章
    返回