Abstract:
An angular velocity sensing experimental measurement system, with high-Q optical microsphere cavity as the core sensitive component, was set up based on the theory of angular velocity sensor. During the experiment, the resonance curve of optical microsphere cavity and the corresponding demodulation curve were obtained by the modulation and demodulation; the lock-tracking of resonance point by the proportional-integral-derivative (PID) feedback control circuit was achieved, and the locked accuracy of resonance point was about 10 kHz. The experiment for testing two different rotating angular velocities, low and high, was carried out, then the data was analyzed to obtain the result of the trend of the output signal amplitude corresponding to the change of the rotational angular velocity provided by the test table. The sensing effect of high-Q optical microsphere cavity angular velocity was proved preliminarily, which could provide the foundation for the further research of high-Q optical micro-resonator angular rate sensors.