基于自适应阈值法的合金弹头缺陷尺寸测量算法研究

韩婧, 陈友兴

韩婧, 陈友兴. 基于自适应阈值法的合金弹头缺陷尺寸测量算法研究[J]. 应用光学, 2013, 34(5): 841-844.
引用本文: 韩婧, 陈友兴. 基于自适应阈值法的合金弹头缺陷尺寸测量算法研究[J]. 应用光学, 2013, 34(5): 841-844.
HAN Jing, CHEN You-xing. Measurement methods of warhead scratch defect size based on adaptive threshold[J]. Journal of Applied Optics, 2013, 34(5): 841-844.
Citation: HAN Jing, CHEN You-xing. Measurement methods of warhead scratch defect size based on adaptive threshold[J]. Journal of Applied Optics, 2013, 34(5): 841-844.

基于自适应阈值法的合金弹头缺陷尺寸测量算法研究

详细信息
    通讯作者:

    韩婧(1987-), 女, 山西太原人,硕士研究生, 主要从事信号与信息处理技术研究。 Email:panggeniuniu@163.com

  • 中图分类号: TN215

Measurement methods of warhead scratch defect size based on adaptive threshold

  • 摘要: 在合金弹头缺陷尺寸检测中,针对传统分割算法无法在复杂背景下将缺陷完整分割的问题,采用了自适应阈值分割算法。该算法在分割时,图像的每个像素对应的阈值不同,可避免缺陷和背景错误划分,而且可以在保证缺陷完整分割的情况下避免噪声带来的干扰。给出了缺陷分割过程,完成了缺陷尺寸计算,并对尺寸计算的准确度进行了分析。实验结果表明,在缺陷与背景灰度差较小的情况下,该算法仍可较为完整地将缺陷分割出来,测量结果的标准差为0.122 8,不确定度为0.368 4。
    Abstract: As it cannot integrally divide the defects under the complex background by the traditional measurement methods of the warhead scratch defect size, the method of adaptive threshold segmentation is used to solve this problem. Using this method for image segmentation, each pixel of the image corresponds to the different threshold, it can avoid the error division between defects and background, and the noise interference can also be avoid when the defects are completely divided. Defect segmentation process are given, the defect size is calculated, and the precision of the size measurement is analyzed. Experimental results shows that the defects can be completely divided by this methods when the gray level are different between the defects and the background, standard error is 0.122 8, and the uncertainty is 0.368 4.
  • [1]冷艳,景作军.铝型材等温挤压技术综述[J].北方工业大学学报,2004,16(1):56-61.
    LENG Yan, JING Zuo-jun. Isothermal extrusion of aluminum profiles[J].Journal of North China University of Technology,2004,16(1):56-61.(in Chinese with an English abstract)
    [2]孙锋.温挤压技术在铝合金壳体类零件成形上的应用[J].新技术新工艺,2007,2:21-22.
    SUN Feng.Application of warm extrusion technology for parts forming of aluminum-alloy shells[J]. New Technology & New Process,2007,2:21-22.(in Chinese with an English abstract)
    [3]SHUO Wei ,QU Hong, HOU Meng-shu.Automatic image segmentation based on PCNN with adaptive threshold time constant[J]. Neurocomputing,2011,74(9):1485-1491.
    [4]韩思奇,王蕾.图像分割的阈值法综述[J].系统工程与电子技术,2002,24(6):91-94.
    HAN Si-qi, WANG Lei. A survey of thresholding methods for image segmentation[J]. Systems Engineering and Electronics,2002,24(6):91-94.(in Chinese with an English abstract)

    [5]江亲瑜,李平,孙兰.最大类间方差算法在运动检测系统中的应用[J].计算机应用,2011,31(1):259-262.
    JIANG Qin-yu, LI Ping. SUN Lan. Application of otsu method in motion detection system[J]. Journal of Computer Applications,2011,31(1):259-262.(in Chinese with an English abstract)
    [6]MIZUSHIMA A,LU Ren-fu. An image segmentation method for apple sorting and grading using support vector machine and Otsu-s method[J]. Computers and Electronics in Agriculture ,2013,94:29-37.
    [7]MANISHA S, VANDANA C. Objective evaluation parameters of image segmentation algorithms[J].International Journal of Engineering and Advanced Technology,2012,2(2):84-87.
    [8]IVAN G D,FERNANDO D.A region-centered topic model for object discovery and category-based image segmentation[J].Pattern Recognition,2013,46(9):2437-2449.
    [9]CHEN Qiang , SUN Quan-sen,XIA De-shen. Serial slice image segmentation of digital human based on adaptive geometric active contour tracking[J].Computers in Biology and Medicine,2013,43(6):635-648.
    [10]NAVON E, MILLER O,  AVERBUCH A.Color image segmentation based on adaptive local thresholds [J].Image and Vision Computing,2005,23(1):69-85.
计量
  • 文章访问数:  2156
  • HTML全文浏览量:  116
  • PDF下载量:  315
  • 被引次数: 0
出版历程
  • 刊出日期:  2013-09-14

目录

    /

    返回文章
    返回