[1]YOO S J B. Optical packet and burst switching technologies for the future photonic internet[J]. Journal of Lightwave Technology, 2006, 24(12): 4468-4492. [2]TAKAGI M, LI H, WATABE K, et al. 400Gb/s hybrid optical switching demonstration combining multi-wavelength OPS and OCS with dynamic resource allocation[C]. San Diego, USA: Optical Fiber Communication Conference, 2009: 1-3. [3]EL-BAWAB T S, SHIN J-D. Optical packet switching in core networks: between vision and reality[J]. IEEE Communications Magazine, 2002, 40(9): 60-65. [4]HU H, PALUSHANI E, GALILI M, et al. 640 Gbit/s and 1.28 Tbit/s polarisation insensitive all optical wavelength conversion[J]. Optics Express, 2010, 18(10): 9961-9966. [5]MISHINA K, KITAGAWA S, MARUTA A. All-optical modulation format conversion from on-off-keying to multiple-level phase-shift-keying based on nonlinearity in optical fiber[J]. Optics Express, 2007, 15(13): 8444-8453. [6]ITO C, CARTLEDGE J C. Polarization independent all-optical 3R regeneration based on the Kerr effect in highly nonlinear fiber and offset spectral slicing[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2008, 14(3): 616-624. [7]TANGDIONGGA E, MULVAD H C H, WAARDT H D, et al. SOA-based clock recovery and demultiplexing in a lab trial of 640 Gb/s OTDM transmission over 50km fibre link[C]. Berlin, Germany: 33rd European Conference and Exhibition of Optical Communication, 2007: 1-2. [8]BERRETTINI G, SIMI A, MALACARNE A, et al. Ultrafast integrable and reconfigurable XNOR, AND, NOR, and NOT photonic logic gate[J]. IEEE Photonics Technology Letters, 2006, 18(8): 917-919. [9]ZHANG C, QIU K, ZHOU Heng, et al. Experimental demonstration of tunable multiple optical orthogonal codes sequences-based optical label for optical packets switching[J]. Optics Communications, 2010, 283(6): 932-938. [10]周恒,邱昆,凌云,等. 基于多重光正交码光标签的光分组交换系统实验研究[J]. 中国激光, 2009, 4(6): 867-872. ZHOU Heng, QIU Kun, LING Yun, et al. Design and demonstration of optical packet switching system adopting multiple optical orthogonal codes label[J]. Chinese Journal of Lasers, 2009, 4(6): 867-872. (in Chinese with an English abstract) [11]BINTJAS C, YIANNOPOULOS K, PLEROS N, et al. Clock recovery circuit for optical packets[J]. IEEE Photonics Technology Letters, 2002, 14(9): 1363-1365. [12]PLEROS N, VYRSOKINOS K, BINTJAS C, et al. All-optical clock recovery from short asynchronous data packets at 10 Gb/s[J]. IEEE Photonics Technology Letters, 2003, 15(9): 1291-1293. [13]PHILLIPS I D, GLOAG A, KEAN P N, et al. Simultaneous demultiplexing, data regeneration, and clock recovery with a single semiconductor optical amplifier-based nonlinearoptical loop mirror[J]. Optics Letters, 1997, 22(17): 1326-1328. [14]LI J, HUANG T, CHEN L R. Detailed analysis of all-optical clock recovery at 10 Gb/s based on a fiber optical parametric oscillator[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2012, 18(2): 701-708. [15]SARTORIUS B, BORNHOLDT C, BROX O, et al. All-optical clock recovery module based on self-pulsating DFB laser[J]. Electronics Letters, 1998, 34(17): 1664-1665. [16]吕捷,于晋龙,李亚男,等. 基于注入锁模激光器的40Gb/s全光时钟提取[J]. 光学学报, 2005, 25(10): 1307-1312. LU Jie, YU Jin-long, LI Ya-nan, et al. 40 Gb/s all-optical clock extraction based on the injection mode-locked laser[J]. Acta Optica Sinica, 2005, 25(10): 1307-1312. (in Chinese with an English abstract) [17]王顺艳,江阳,吴次南,等. 全光纤锁模腔结构的全光时钟提取实验研究[J]. 中国激光, 2012, 39(5): 0505005-1-0505005-5. WANG Shun-yan, JIANG Yang, WU Ci-nan, et al. Experimental study on all-optical clock recovery of all-fiber mode-locking cavity configuration[J]. Chinese Journal of Lasers, 2012, 39(5): 0505005-1-0505005-5. (in Chinese with an English abstract) [18]MAMYSHEV P V. All-optical data regeneration on self-phase modulation effect[C]. Madrid, Spain: 24th European Conference on Optical Communication, 1998: 475-476. [19]SALEM R, LENIHAN A S, CARTER G M, et al. Techniques for polarization-independent cross-phase modulation in nonlinear birefringent fibers[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2008, 14(3): 540-550. [20]SUZUKI J, TANEMURA T, KIKUCHI K. All-optical regenerator based on XPM-induced wavelength shift in highly-nonlinear fiber at 40 Gb/s[C]. Baltimore, USA: Conference on Lasers and Electro-Optics, 2005: 300-302. [21]ITO C, MONFILS I, CARTLEDGE J C. All-optical 3R regeneration using higher-order four-wave mixing in a highly nonlinear fiber with a clock-modulated optical pump signal[C]. Montréal, Canada: 19th Annual Meeting of the IEEE Lasers and Electro-Optics Society, 2006: 223-224. [22]INOHARA R, NISHIMURA K, TSURUSAWA M, et al. Experimental analysis of cross-phase modulation and cross-gain modulation in SOA-injecting CW assist light[J]. IEEE Photonics Technology Letters, 2003, 15(9): 1192-1194. [23]罗特,武保剑,文峰,等. 基于闲频光功率的光纤参量振荡器反馈控制实验[J]. 中国激光, 2012, 39(8): 0805008-1-0805008-5. LUO Te, WU Bao-jian, WEN Feng, et al. Experiments on feedback control of fiber optical parametric oscillator based on idler power[J]. Chinese Journal of Lasers, 2012, 39(8): 0805008-1-0805008-5. (in Chinese with an English abstract) [24]BOGRIS A, SYVRIDIS D. Regenerative properties of a pump-modulated four-wave mixing scheme in dispersion-shifted fibers[J]. Journal of Lightwave Technology, 2003, 21(9): 1892-1902. [25]ZHOU H, QIU K, TIAN F. Optimized all-optical amplitude reshaping by exploiting nonlinear phase shift in fiber for degenerated FWM[J]. Chinese Optics Letters, 2012, 10(5): 050601-1-050601-3. [26]韩瑞,武保剑,李述标,等. 磁光四波混频实验平台研究[J]. 中国激光, 2012, 39(7): 0705002-1-0705002-5. HAN Rui, WU Bao-jian, LI Shu-biao, et al. Experimental platform for magneto-optical four wave mixing[J]. Chinese Journal of Lasers, 2012, 39(7): 0705002-1-0705002-5. (in Chinese with an English abstract) [27]WEN F, WU B J, LI S, et al. Magneto-optic four-wave mixing in fibers: theory and experiment[C]. Anaheim, USA: Optical Fiber Communication Conference, 2013. [28]AHMAD H, THAMBIRATNAM K, AWANG N A, et al. Four-wave mixing in zirconia-erbium doped fiber a comparison between ring and linear cavities[J]. Laser Physics Letters, 2012, 9(11): 819-825. [29]WEN F, WU B J. Four-wave-mixing-based multi-channel 2R regenerator with dispersion compensation[C]. Shanghai, China: International Symposium on Photonics and Optoelectronics, 2012: 1-4.
|