光交换节点中的全光再生技术研究

武保剑, 文峰, 周星宇, 邱昆

武保剑, 文峰, 周星宇, 邱昆. 光交换节点中的全光再生技术研究[J]. 应用光学, 2013, 34(4): 711-717.
引用本文: 武保剑, 文峰, 周星宇, 邱昆. 光交换节点中的全光再生技术研究[J]. 应用光学, 2013, 34(4): 711-717.
WU Bao-jian, WEN Feng, ZHOU Xing-yu, QIU Kun. All-optical regeneration technologies in optical switching nodes[J]. Journal of Applied Optics, 2013, 34(4): 711-717.
Citation: WU Bao-jian, WEN Feng, ZHOU Xing-yu, QIU Kun. All-optical regeneration technologies in optical switching nodes[J]. Journal of Applied Optics, 2013, 34(4): 711-717.

光交换节点中的全光再生技术研究

详细信息
    通讯作者:

    武保剑(1970-),男,河南新乡人,教授,博士生导师,主要从事光通信方面的研究工作。 Email: bjwu@uestc.edu.cn

  • 中图分类号: TN929.11; O437

All-optical regeneration technologies in optical switching nodes

  • 摘要: 比较了光交换节点中几种全光再生技术方案的优缺点,重点描述光纤参量振荡器的时钟提取实验和基于磁光四波混频的光门整形技术。实验揭示了光纤参量振荡器闲频光反馈控制方法的工作原理,并提取出稳定的高质量时钟信号。仿真比较了4种四波混频光门再生方案的功率转移特性,开展了磁光四波混频再生实验。研究表明:通过对高非线性光纤加载180 Gs直流磁场,可使光接收机灵敏度进一步提升2 dB。最后指出了全光再生技术的多信道、集成化发展趋势。
    Abstract: Several schemes on all-optical signal regeneration in optical switching nodes are compared. The clock extraction experiments using fiber optical parametric oscillator (FOPO) and magneto-optical four-wave mixing (MO-FWM) 2R regeneration are analyzed. The principle of the idler-power-based feedback control technique to effectively enhance the stability of the FOPO for clock extraction is illustrated in terms of the experimental data. The power transfer characteristics of four FWM-based regeneration schemes are simulated and the MO-FWM-based regeneration experiment is implemented by using clock pump and idler filtering. It is shown that, the receiver sensitivity is further improved by 2 dB when the direct current (DC) magnetic field of 180 Gs is applied along the high nonlinear fiber. It is also pointed out that all-optical regeneration technologies trend to the evolution of multi-channel and integration from a long-term point of view.
  • [1]YOO S J B. Optical packet and burst switching technologies for the future photonic internet[J]. Journal of Lightwave Technology, 2006, 24(12): 4468-4492.
    [2]TAKAGI M, LI H, WATABE K, et al. 400Gb/s hybrid optical switching demonstration combining multi-wavelength OPS and OCS with dynamic resource allocation[C]. San Diego, USA: Optical Fiber Communication Conference, 2009: 1-3.
    [3]EL-BAWAB T S, SHIN J-D. Optical packet switching in core networks: between vision and reality[J]. IEEE Communications Magazine, 2002, 40(9): 60-65.
    [4]HU H, PALUSHANI E, GALILI M, et al. 640 Gbit/s and 1.28 Tbit/s polarisation insensitive all optical wavelength conversion[J]. Optics Express, 2010, 18(10): 9961-9966.
    [5]MISHINA K, KITAGAWA S, MARUTA A. All-optical modulation format conversion from on-off-keying to multiple-level phase-shift-keying based on nonlinearity in optical fiber[J]. Optics Express, 2007, 15(13): 8444-8453.
    [6]ITO C, CARTLEDGE J C. Polarization independent all-optical 3R regeneration based on the Kerr effect in highly nonlinear fiber and offset spectral slicing[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2008, 14(3): 616-624.
    [7]TANGDIONGGA E, MULVAD H C H, WAARDT H D, et al. SOA-based clock recovery and demultiplexing in a lab trial of 640 Gb/s OTDM transmission over 50km fibre link[C]. Berlin, Germany: 33rd European Conference and Exhibition of Optical Communication, 2007: 1-2.
    [8]BERRETTINI G, SIMI A, MALACARNE A, et al. Ultrafast integrable and reconfigurable XNOR, AND, NOR, and NOT photonic logic gate[J]. IEEE Photonics Technology Letters, 2006, 18(8): 917-919.
    [9]ZHANG C, QIU K, ZHOU Heng, et al. Experimental demonstration of tunable multiple optical orthogonal codes sequences-based optical label for optical packets switching[J]. Optics Communications, 2010, 283(6): 932-938.
    [10]周恒,邱昆,凌云,等. 基于多重光正交码光标签的光分组交换系统实验研究[J]. 中国激光, 2009, 4(6): 867-872.
    ZHOU Heng, QIU Kun, LING Yun, et al. Design and demonstration of optical packet switching system adopting multiple optical orthogonal codes label[J]. Chinese Journal of Lasers, 2009, 4(6): 867-872. (in Chinese with an English abstract)
    [11]BINTJAS C, YIANNOPOULOS K, PLEROS N, et al. Clock recovery circuit for optical packets[J]. IEEE Photonics Technology Letters, 2002, 14(9): 1363-1365.
    [12]PLEROS N, VYRSOKINOS K, BINTJAS C, et al. All-optical clock recovery from short asynchronous data packets at 10 Gb/s[J]. IEEE Photonics Technology Letters, 2003, 15(9): 1291-1293.
    [13]PHILLIPS I D, GLOAG A, KEAN P N, et al. Simultaneous demultiplexing, data regeneration, and clock recovery with a single semiconductor optical amplifier-based nonlinearoptical loop mirror[J]. Optics Letters, 1997, 22(17): 1326-1328.
    [14]LI J, HUANG T, CHEN L R. Detailed analysis of all-optical clock recovery at 10 Gb/s based on a fiber optical parametric oscillator[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2012, 18(2): 701-708.
    [15]SARTORIUS B, BORNHOLDT C, BROX O, et al. All-optical clock recovery module based on self-pulsating DFB laser[J]. Electronics Letters, 1998, 34(17): 1664-1665.
    [16]吕捷,于晋龙,李亚男,等. 基于注入锁模激光器的40Gb/s全光时钟提取[J]. 光学学报, 2005, 25(10): 1307-1312.
    LU Jie, YU Jin-long, LI Ya-nan, et al. 40 Gb/s all-optical clock extraction based on the injection mode-locked laser[J]. Acta Optica Sinica, 2005, 25(10): 1307-1312. (in Chinese with an English abstract)
    [17]王顺艳,江阳,吴次南,等. 全光纤锁模腔结构的全光时钟提取实验研究[J]. 中国激光, 2012, 39(5): 0505005-1-0505005-5.
    WANG Shun-yan, JIANG Yang, WU Ci-nan, et al. Experimental study on all-optical clock recovery of all-fiber mode-locking cavity configuration[J]. Chinese Journal of Lasers, 2012, 39(5): 0505005-1-0505005-5. (in Chinese with an English abstract)
    [18]MAMYSHEV P V. All-optical data regeneration on self-phase modulation effect[C]. Madrid, Spain: 24th European Conference on Optical Communication, 1998: 475-476.
    [19]SALEM R, LENIHAN A S, CARTER G M, et al. Techniques for polarization-independent cross-phase modulation in nonlinear birefringent fibers[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2008, 14(3): 540-550.
    [20]SUZUKI J, TANEMURA T, KIKUCHI K. All-optical regenerator based on XPM-induced wavelength shift in highly-nonlinear fiber at 40 Gb/s[C]. Baltimore, USA: Conference on Lasers and Electro-Optics, 2005: 300-302.
    [21]ITO C, MONFILS I, CARTLEDGE J C. All-optical 3R regeneration using higher-order four-wave mixing in a highly nonlinear fiber with a clock-modulated optical pump signal[C]. Montréal, Canada: 19th Annual Meeting of the IEEE Lasers and Electro-Optics Society, 2006: 223-224.
    [22]INOHARA R, NISHIMURA K, TSURUSAWA M, et al. Experimental analysis of cross-phase modulation and cross-gain modulation in SOA-injecting CW assist light[J]. IEEE Photonics Technology Letters, 2003, 15(9): 1192-1194.
    [23]罗特,武保剑,文峰,等. 基于闲频光功率的光纤参量振荡器反馈控制实验[J]. 中国激光, 2012, 39(8): 0805008-1-0805008-5.
    LUO Te, WU Bao-jian, WEN Feng, et al. Experiments on feedback control of fiber optical parametric oscillator based on idler power[J]. Chinese Journal of Lasers, 2012, 39(8): 0805008-1-0805008-5. (in Chinese with an English abstract)
    [24]BOGRIS A, SYVRIDIS D. Regenerative properties of a pump-modulated four-wave mixing scheme in dispersion-shifted fibers[J]. Journal of Lightwave Technology, 2003, 21(9): 1892-1902.
    [25]ZHOU H, QIU K, TIAN F. Optimized all-optical amplitude reshaping by exploiting nonlinear phase shift in fiber for degenerated FWM[J]. Chinese Optics Letters, 2012, 10(5): 050601-1-050601-3.
    [26]韩瑞,武保剑,李述标,等. 磁光四波混频实验平台研究[J]. 中国激光, 2012, 39(7): 0705002-1-0705002-5.
    HAN Rui, WU Bao-jian, LI Shu-biao, et al. Experimental platform for magneto-optical four wave mixing[J]. Chinese Journal of Lasers, 2012, 39(7): 0705002-1-0705002-5. (in Chinese with an English abstract)
    [27]WEN F, WU B J, LI S, et al. Magneto-optic four-wave mixing in fibers: theory and experiment[C]. Anaheim, USA: Optical Fiber Communication Conference, 2013.
    [28]AHMAD H, THAMBIRATNAM K, AWANG N A, et al. Four-wave mixing in zirconia-erbium doped fiber a comparison between ring and linear cavities[J]. Laser Physics Letters, 2012, 9(11): 819-825.
    [29]WEN F, WU B J. Four-wave-mixing-based multi-channel 2R regenerator with dispersion compensation[C]. Shanghai, China: International Symposium on Photonics and Optoelectronics, 2012: 1-4.
计量
  • 文章访问数:  2454
  • HTML全文浏览量:  105
  • PDF下载量:  28
  • 被引次数: 0
出版历程
  • 刊出日期:  2013-07-14

目录

    /

    返回文章
    返回