三维轮廓扫描法测量透镜曲率半径的实验研究

定翔, 李飞, 洪宝玉

定翔, 李飞, 洪宝玉. 三维轮廓扫描法测量透镜曲率半径的实验研究[J]. 应用光学, 2012, 33(4): 761-765.
引用本文: 定翔, 李飞, 洪宝玉. 三维轮廓扫描法测量透镜曲率半径的实验研究[J]. 应用光学, 2012, 33(4): 761-765.
DING Xiang, LI Fei, HONG Bao-yu. Curvature radius measurement by three-dimension profilometry[J]. Journal of Applied Optics, 2012, 33(4): 761-765.
Citation: DING Xiang, LI Fei, HONG Bao-yu. Curvature radius measurement by three-dimension profilometry[J]. Journal of Applied Optics, 2012, 33(4): 761-765.

三维轮廓扫描法测量透镜曲率半径的实验研究

详细信息
    通讯作者:

    定翔(1984-),男,湖北洪湖人,助理研究员,博士,主要从事球面和非球面参数计量研究。

  • 中图分类号: TN207; TH741

Curvature radius measurement by three-dimension profilometry

  • 摘要: 三维轮廓扫描方法可通过连续扫描透镜表面三维空间形貌,拟合得到其曲率半径值。该方法具有测量精度高、可任意选定测量区域、测量力微弱、对光学表面划伤可忽略等优点。通过实验,研究了三维轮廓扫描法测量透镜曲率半径的精度,并分析了测量区域大小、扫描间距等因素对测量精度的影响。实验结果表明,该方法测量凸、凹球面透镜的曲率半径的相对重复性可达到110-6。
    Abstract: Accurate measurement of curvature radius can be realized by three-dimension profilometry by scanning and fitting the surface topography of lenses. It takes the advantages of high accuracy, variable scanning area, tiny contact force and neglectable scratch to optical surface. Precision of curvature radius measurement by three-dimension profilometry is investigated, as well the influence of scanning area size and scanning intervals on the precision are discussed. Experimental results indicate that the standard deviation of relative repeatability can achieve as high as 110-6 in curvature radius measurement in both convex and concave lenses.
  • [1]徐昌杰, 潘永强. 利用迈克尔逊干涉仪测量光学球面的曲率半径[J]. 西安工业学院学报, 2002, 22(1): 31-34.

    XU Chang-jie, PAN Yong-qiang. Measuring radius of optical sphere with white-light interference fringes of Michelson [J]. Journal of Xi-an Institute of Technology, 2002, 22(1): 31-34.(in Chinese with an English abstract)

    [2]王忠林,郑丹,孙冬丽. 基于白光干涉的光学球面半径测量研究[J]. 应用光学, 2007, 28(6): 707-711.

    WANG Zhong-lin, ZHENG Dan, SUN Dong-li. Measurement of optical sphere radius with white light interference [J]. Journal of Applied Optics, 2007, 28(6): 707-711. (in Chinese with an English abstract)

    [3]陈安健. 用线阵CCD实现透镜曲率半径自动测量的研究[J]. 应用光学, 2001, 22(3): 47- 49.

    CHEN An-jian. Research on auto-measuring precisely lens curvature radius with linear CCD [J]. Journal of Applied Optics, 2001, 22(3): 47- 49. (in Chinese with an English abstract)

    [4]HAO Q, ZHU Q, HU Y. Random phase-shifting interferometry without accurately controlling or calibrating the phase shifts [J]. Optics Letters, 2009, 34(8): 1288-1290.

    [5]杨文国, 赵维谦, 金国量,等. 球体半径超精测量系统研究[J]. 航天工艺, 2001(2):10-14.

    YANG Weng-guo, ZHAO Wei-qian, JIN Guo-liang, et al. Research on ultra accuracy radius measurement of spheres [J]. Hangtian Gongyi, 2001(2):10-14. (in Chinese with an English abstract)

    [6]果宝智. 自准直法测量大的硅透镜曲率半径[J]. 激光与红外, 1997(4): 245-248.

    GUO Bao-zhi.Autocollimation method for curvature radius measurement of silicon lenses [J]. Laser & Infrared, 1997(4): 245-248. (in Chinese with an English abstract)

    [7]XIANG Y. Focus retrocollimated interferometry for long-radius-of-curvature measurement [J]. Applied Optics, 2001, 40(34): 6211- 6214.

    [8]李建民. 用自准直原理测大曲率半径调焦误差及讨论[J]. 计量技术, 2004(11): 25-27.

    LI Jian-min. Measurement and discussion on focusing error in large curvature radius measurement based on autocollimation [J]. Measurement Technique, 2004(11): 25-27. (in Chinese with an English abstract)

    [9]ZHAO W, SUN R, QIU R, et al. Laser differential confocal radius measurement [J]. Optics Express, 2010, 18(3): 2345-2360.

    [10]CARNELL K H, WELFORD W T. A method for precision spherometry of concave surfaces [J]. Journal of Physics E: Scientific Instruments, 1971, 4: 1060-1062.
计量
  • 文章访问数:  2992
  • HTML全文浏览量:  93
  • PDF下载量:  655
  • 被引次数: 0
出版历程
  • 刊出日期:  2012-07-14

目录

    /

    返回文章
    返回