留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

舰船尾迹和海面红外仿真成像

黄子亮 张昊春 王琦

黄子亮, 张昊春, 王琦. 舰船尾迹和海面红外仿真成像[J]. 应用光学.
引用本文: 黄子亮, 张昊春, 王琦. 舰船尾迹和海面红外仿真成像[J]. 应用光学.
HUANG Ziliang, ZHANG Haochun, WANG Qi. Infrared simulation imaging of ship wake and sea surface[J]. Journal of Applied Optics.
Citation: HUANG Ziliang, ZHANG Haochun, WANG Qi. Infrared simulation imaging of ship wake and sea surface[J]. Journal of Applied Optics.

舰船尾迹和海面红外仿真成像

基金项目: 国家自然科学基金(51776050)
详细信息
    作者简介:

    黄子亮(1998—),男,硕士研究生,主要从事海洋光学与探测技术的建模仿真以及基于深度学习的舰船目标检测。E-mail:20S102118@stu.hit.edu.cn

    通讯作者:

    张昊春(1977—),男,博士,教授,博导,主要从事军用新型光电对抗技术、热学超材料及航天器新型热控技术、空间/深海核动力先进核能系统研究。E-mail:zhc5@vip.163.com

  • 中图分类号: TN206

Infrared simulation imaging of ship wake and sea surface

  • 摘要: 舰船在军事领域有着极其重要的地位,其尾迹对海面的温度和高度都会造成相较明显的变化,且具有持续时间长、不易消除等特点,所以模拟舰船尾迹和海面红外辐射图像可以更为直观的识别舰船目标,具有强烈的军事需求。以MODTRAN软件模拟的不同背景环境下大气对8 μm~14 μm波段的透过率为数据基础,结合Cox-Munk坡度概率分布模型并考虑海浪遮挡因素建立了一种舰船尾迹红外辐射模型,模拟了不同背景环境、不同探测距离的红外尾迹图像。仿真结果表明:相同探测条件下,随着探测距离增大,舰船尾迹辐射亮度减小,但粗糙海面对红外辐射的遮挡作用显著减弱,海面舰船尾迹更易被识别;大气传输模型对红外成像结果影响较大,夏季背景辐射能量大且海面平均遮挡作用小,舰船尾迹红外成像更为清晰。
  • 图  1  到达红外探测器的红外辐射示意图

    Fig.  1  Schematic diagram of infrared radiation reaching infrared detector

    图  2  粗糙海面发射率模型

    Fig.  2  Schematic diagram of rough sea surface emissivity model

    图  3  粗糙海面反射率模型

    Fig.  3  Schematic diagram of rough sea surface reflectance model

    图  4  Kelvin尾迹波形特征[28]

    Fig.  4  Waveform characteristics of Kelvin wake

    图  5  红外成像模拟仿真坐标系统成像原理示意图

    Fig.  5  Schematic diagram of imaging principle infrared imaging simulation coordinate system

    图  6  热尾流成像仿真计算流程图

    Fig.  6  Flow chart of thermal wake imaging simulation calculation

    图  7  不同分辨率下随机波浪高度场分布

    Fig.  7  Random wave height field distribution at different resolutions

    图  8  潜深100 m、春季不同航速的高度分布图

    Fig.  8  Altitude distribution of different speeds with diving depth of 100 m in spring

    图  9  潜深100 m、航速2节不同季节的高度分布图

    Fig.  9  Altitude distribution of different seasons with diving depth of 100 m and speed of 2 knots

    图  10  不同大气传输模型的红外辐射能量分布

    Fig.  10  Infrared radiation energy distribution of different atmospheric transport models

    图  11  不同探测高度的红外辐射能量分布

    Fig.  11  Infrared radiation energy distribution at different detecting heights

  • [1] 杨风暴. 红外物理与技术[M]. 北京: 电子工业出版社, 2014.

    YANG (Feng)(Bao| Pu). Infrared physics and technology[M]. Beijing: Publishing House of Electronics industry, 2014.
    [2] HAGT E, DURNIN M. Space, China's tactical frontier[J]. Journal of Strategic Studies,2011,34(5):733-761. doi: 10.1080/01402390.2011.610660
    [3] ARNOLD J O, WHITING E E, LYLE G C. Line by line calculation of spectra from diatomic molecules and atoms assuming a Voigt line profile[J]. Journal of Quantitative Spectroscopy and Radiative Transfer,1969,9(6):775-798. doi: 10.1016/0022-4073(69)90075-2
    [4] JOSEPH J H, WISCOMBE W J, WEINMAN J A. The delta-Eddington approximation for radiative flux transfer[J]. Journal of the Atmospheric Sciences,1976,33(12):2452-2459. doi: 10.1175/1520-0469(1976)033<2452:TDEAFR>2.0.CO;2
    [5] HARRIS J W, WILLIAMS W D. SOSIS: infrared ocean simulation package with target interactions[C]//Optical Engineering and Photonics in Aerospace Sensing. Proc SPIE 1967, Characterization, Propagation, and Simulation of Sources and Backgrounds III, Orlando, FL, USA. 1993, 1967: 235-243.
    [6] GILMORE M A, MOORHEAD I R, OXFORD D E, et al. CAMEO-SIM: a broadband scene generation system that is fit for purpose[C]//AeroSense '99. Proc SPIE 3699, Targets and Backgrounds: Characterization and Representation V, Orlando, FL, USA. 1999, 3699: 217-228.
    [7] DUONG N T, WEGENER M. Validation of the SensorVision thermal emission model[R]. 2001.
    [8] LATGER J, CATHALA T, DOUCHIN N, et al. Simulation of active and passive infrared images using the SE-WORKBENCH[C]//Defense and Security Symposium. Proc SPIE 6543, Infrared Imaging Systems: Design, Analysis, Modeling, and Testing XVIII, Orlando, Florida, USA. 2007, 6543: 11-25.
    [9] ROSS V, DION D. SMART and SMARTI: visible and IR atmospheric radiative-transfer libraries optimized for wide-band applications[C]//SPIE Defense, Security, and Sensing. Proc SPIE 8014, Infrared Imaging Systems: Design, Analysis, Modeling, and Testing XXII, Orlando, Florida, USA. 2011, 8014: 257-266.
    [10] 张亦宁, 张昊春, 马锐, 等. 不同云雨条件下红外热成像系统作用距离评估[J]. 应用光学,2016,37(2):288-296. doi: 10.5768/JAO201637.0206001

    ZHANG Yining, ZHANG Haochun, MA Rui, et al. Evaluation of infrared thermal imaging system detection distance in different cloud and rain conditions[J]. Journal of Applied Optics,2016,37(2):288-296. doi: 10.5768/JAO201637.0206001
    [11] 林凯, 黄曦. 基于OGRE的动态红外场景仿真研究[J]. 电子科技,2010,23(4):7-10. doi: 10.3969/j.issn.1007-7820.2010.04.003

    LIN Kai, HUANG Xi. Research on dynamic infrared scene simulation based on OGRE[J]. Electronic Science and Technology,2010,23(4):7-10. doi: 10.3969/j.issn.1007-7820.2010.04.003
    [12] 张昊春, 马超, 马锐, 等. 不同条件下海面热尾流红外辐射特性研究[J]. 热科学与技术,2017,16(4):294-300. doi: 10.13738/j.issn.1671-8097.2017.04.006

    ZHANG Haochun, MA Chao, MA Rui, et al. Study on infrared radiation characteristics of sea surface thermal wake under various conditions[J]. Journal of Thermal Science and Technology,2017,16(4):294-300. doi: 10.13738/j.issn.1671-8097.2017.04.006
    [13] 张昊春, 吉宇, 马锐, 等. 水下航行体热尾流浮升特性研究[J]. 舰船科学技术,2015,37(7):24-28. doi: 10.3404/j.issn.1672-7649.2015.07.006

    ZHANG Haochun, JI Yu, MA Rui, et al. Buoyant characteristics of thermal wakes discharged by underwater vehicles[J]. Ship Science and Technology,2015,37(7):24-28. doi: 10.3404/j.issn.1672-7649.2015.07.006
    [14] 张昊春, 曲博岩, 金亮, 等. 水下航行器热尾流目标海平面探测红外成像仿真[J]. 应用光学,2019,40(4):525-534. doi: 10.5768/JAO201940.0401001

    ZHANG Haochun, QU Boyan, JIN Liang, et al. Infrared imaging simulation of sea surface detection of underwater vehicle thermal wake target[J]. Journal of Applied Optics,2019,40(4):525-534. doi: 10.5768/JAO201940.0401001
    [15] PRAMUDYA F S, PAN Jiayi, DEVLIN A T. Estimation of significant wave height of near-range traveling ocean waves using sentinel-1 SAR images[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing,2019,12(4):1067-1075. doi: 10.1109/JSTARS.2019.2902566
    [16] XIE Dengfeng, CHEN Kunshan, YANG Xiaofeng. Effects of wind wave spectra on radar backscatter from sea surface at different microwave bands: a numerical study[J]. IEEE Transactions on Geoscience and Remote Sensing,2019,57(9):6325-6334. doi: 10.1109/TGRS.2019.2905558
    [17] NEUMANN G. On ocean wave spectra and a new method of forecasting wind generated sea[J]. Beach Erosion Board Tech Mem,1953:43.
    [18] PIERSON W J Jr, MOSKOWITZ L. A proposed spectral form for fully developed wind seas based on the similarity theory of S. A. Kitaigorodskii[J]. Journal of Geophysical Research Atmospheres,1964,69(24):5181-5190. doi: 10.1029/JZ069i024p05181
    [19] Hasselmann K, Barnett T P, Bouws E, et al. Measurements of wind-wave growth and swell decay during the joint North Sea wave project (JONSWAP)[J]. Deut. Hydrogr. Z.,1973,8:1-95.
    [20] 鄢来斌, 李思昆, 张秀山. 虚拟海战场景中的海浪实时建模与绘制技术研究[J]. 计算机研究与发展,2001,38(5):568-573.

    YAN Laibin, LI Sikun, ZHANG Xiushan. Real-time modeling and rendering of ocean wave surface for virtural naval battlefields[J]. Journal of Computer Research and Development,2001,38(5):568-573.
    [21] 文圣常余宙文. 海浪理论与计算原理[M]. 北京: 科学出版社, 1984.

    WENShengchang, YU Zhouwen. Wave Theory and Calculation Principle [M]. Beijing: Science Press, 1984.
    [22] MAZ'YA V G, VAINBERG B R. On ship waves[J]. Wave Motion,1993,18(1):31-50. doi: 10.1016/0165-2125(93)90059-O
    [23] 马超. 水下航行体热尾流探测过程红外辐射及成像特性研究[D]. 哈尔滨: 哈尔滨工业大学, 2017.

    MA Chao. Study on inferared radiation and imaging characteristics in thermal wake detection process of underwater vehicle[D]. Harbin: Harbin Institute of Technology, 2017.
    [24] 毕楠. 动态目标水面尾迹建模及识别方法研究[D]. 哈尔滨: 哈尔滨工程大学, 2021.

    BI Nan. Research on modeling and recognition method of sea-surface wake of dynamic target[D]. Harbin: Harbin Engineering University, 2021.
    [25] WU X, SMITH W L. Emissivity of rough sea surface for 8-13 num: modeling and verification[J]. Applied Optics,1997,36(12):2609-2619. doi: 10.1364/AO.36.002609
    [26] SAUNDERS P M. Radiance of sea and sky in the infrared window 800–1200 Cm^–1[J]. Journal of the Optical Society of America,1968,58(5):645. doi: 10.1364/JOSA.58.000645
    [27] 毛佳晨. 海洋背景下舰船目标的红外成像特征研究[D]. 西安: 西安电子科技大学, 2019.

    MAO Jiachen. Research on infrared imaging characteristics of ship targets in ocean background[D]. Xi'an: Xidian University, 2019.
    [28] 曲博岩. 舰船尾迹SAR成像仿真及目标检测方法研究[D]. 哈尔滨: 哈尔滨工业大学, 2020.

    QU Boyan. Research on SAR imaging simulation and target detection method of ship wake[D]. Harbin: Harbin Institute of Technology, 2020.
    [29] 王蛟龙, 张昊春, 张亦宁, 等. 不同条件下海面Kelvin尾迹的红外仿真[J]. 应用光学,2016,37(6):924-931.

    WANG Jiaolong, ZHANG Haochun, ZHANG Yining, et al. Infrared simulation of Kelvin wake on sea surface under different conditions[J]. Journal of Applied Optics,2016,37(6):924-931.
    [30] 李晓辰, 林日亿, 徐伟栋, 等. 黄海海域海水热物理性质实验研究[J]. 化学工程与装备,2017(5):97-100. doi: 10.19566/j.cnki.cn35-1285/tq.2017.05.040

    LI Xiaochen, LIN Riyi, XU Weidong, et al. Experimental study on thermophysical properties of seawater in the Yellow Sea[J]. Chemical Engineering & Equipment,2017(5):97-100. doi: 10.19566/j.cnki.cn35-1285/tq.2017.05.040
    [31] 邱杰, 沈吉明. 水面舰艇目标及其背景的红外成像仿真模型研究[J]. 红外技术,2009,31(3):173-176,180. doi: 10.3969/j.issn.1001-8891.2009.03.012

    QIU Jie, SHEN Jiming. Research on infrared image simulation models of warship and its background[J]. Infrared Technology,2009,31(3):173-176,180. doi: 10.3969/j.issn.1001-8891.2009.03.012
    [32] CHAPALA S R, PIRATI G S, NELAKUDITI U R. Determination of coordinate transformations in UAVS[C]//2016 Second International Conference on Cognitive Computing and Information Processing (CCIP). Mysuru, India. IEEE, : 1-5.
    [33] 张可. 飞行器蒙皮红外辐射图像生成技术研究[D]. 南京: 南京航空航天大学, 2010.

    ZHANG Ke. Research on technology of creating aircraft's skin infrared images[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2010.
  • 加载中
图(11)
计量
  • 文章访问数:  31
  • HTML全文浏览量:  11
  • PDF下载量:  8
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-05-26
  • 修回日期:  2022-09-12
  • 网络出版日期:  2022-11-18

目录

    /

    返回文章
    返回