基于二维多物理场的激光毁伤过程仿真

汤欣卓, 张昊春, 周子杨, 罗曦

汤欣卓, 张昊春, 周子杨, 罗曦. 基于二维多物理场的激光毁伤过程仿真[J]. 应用光学, 2024, 45(5): 1056-1063. DOI: 10.5768/JAO202445.0507001
引用本文: 汤欣卓, 张昊春, 周子杨, 罗曦. 基于二维多物理场的激光毁伤过程仿真[J]. 应用光学, 2024, 45(5): 1056-1063. DOI: 10.5768/JAO202445.0507001
TANG Xinzhuo, ZHANG Haochun, ZHOU Ziyang, LUO Xi. Two-dimensional multiphysics field simulation of laser damage[J]. Journal of Applied Optics, 2024, 45(5): 1056-1063. DOI: 10.5768/JAO202445.0507001
Citation: TANG Xinzhuo, ZHANG Haochun, ZHOU Ziyang, LUO Xi. Two-dimensional multiphysics field simulation of laser damage[J]. Journal of Applied Optics, 2024, 45(5): 1056-1063. DOI: 10.5768/JAO202445.0507001

基于二维多物理场的激光毁伤过程仿真

基金项目: 国家自然科学基金(51776050)
详细信息
    作者简介:

    汤欣卓(2002—),女,硕士研究生,主要从事激光及其应用、激光烧蚀特性研究。E-mail:1017199490@qq.com

    通讯作者:

    张昊春(1977—),男,教授,博士生导师,主要从事军用光电对抗、工程热力学、传热传质学、航天器新型热控技术、核反应堆数值模拟、空间/深海核动力、可再生能源开发与利用研究。E-mail:zhc5@vip.163.com

  • 中图分类号: TN249;TK124

Two-dimensional multiphysics field simulation of laser damage

  • 摘要:

    激光毁伤过程的分析研究可以辅助研究激光防护材料,同时也为激光加工提供建议,因此针对高反射率金属涂覆的材料激光烧蚀过程,建立了基于COMSOL的二维多物理场模型。利用表面热源简化激光作用于物质的问题,建立毁伤过程的位移场、温度场、应力场,并采用向后差分的方法进行求解,获得激光辐照下材料的烧蚀形状与温度场、应力场分布特征。对比有无涂层防护情况下的仿真结果,高反射率涂层防护能够使材料在同时间内激光烧蚀深度减少约95%,径向温度及应力变化范围缩小约33%,验证了高反射率金属涂层的防护效果;对比不同时刻的仿真结果,随时间增长材料烧蚀深度、温度应力变化范围呈均匀增长。为激光毁伤过程的研究以及激光防护材料开发提供了参考。

    Abstract:

    The analytical study of the laser damage process can assist in the study of laser protection materials and also provide suggestions for laser processing. Therefore, a two-dimensional multi-physics field model based on COMSOL was developed for the laser ablation process of materials coated with high-reflectivity metals. Simplifying the problem of laser action on matter by using surface heat sources, the displacement field, temperature field and stress field of the destructive process were established and solved by the method of backward difference to obtain the ablation shape of the material under laser irradiation and the distribution characteristics of the temperature field and stress field. Comparing the simulation results with and without coating protection, the high reflectivity coating protection can reduce the laser ablation depth of the material by about 95% and the radial temperature and stress variation range by about 33% in the same time, which verifies the protective effect of the high reflectivity metal coating. Comparing the simulation results at different moments, the ablation depth and the temperature and stress variation range of the material increased uniformly with time. It provides a reference for the study of the laser damage process and the development of laser protective materials.

  • 图  1   激光烧蚀过程示意图

    Figure  1.   Schematic diagram of laser ablation process

    图  2   金属类高反射率防护材料涂覆的铝靶温度场

    Figure  2.   Temperature field of aluminum targets coated with metal-class high-reflectivity protective materials

    图  3   无防护材料涂覆的铝靶温度场

    Figure  3.   Temperature field of aluminum targets without protective material coating

    图  4   有无防护材料涂覆的铝靶等温线分布

    Figure  4.   Isothermal distribution of aluminum targets with and without protective material coating

    图  5   金属类高反射率防护材料涂覆的铝靶应力场

    Figure  5.   Stress field of aluminum targets coated with metal-class high-reflectivity protective materials

    图  6   无防护材料涂覆的铝靶应力场

    Figure  6.   Stress field of aluminum targets without protective material coating

    表  1   网格单元尺寸参数

    Table  1   Grid cell size parameters

    划分方式最大单元
    尺寸/μm
    最小单元
    尺寸/μm
    最大单元
    增长率
    曲率因子狭窄区域
    分辨率
    极细化200.241.10.21
    常规8043.601.30.31
    下载: 导出CSV

    表  2   Al材料参数

    Table  2   Material parameters of Al

    密度/
    kg·m−3
    热导率/
    W·m−1·K−1
    比热/
    J·kg−1·K−1
    熔点/K 沸点/K 熔化潜热/
    kJ·kg−1
    气化潜热/
    kJ·kg−1
    反射率/
    (10.6 μm,Ra0.56)[15]
    反射率/
    (10.6 μm,Ra9.30)[15]
    2 710 228 902 933 2 792 395 10 770 0.981 0.624
    下载: 导出CSV
  • [1] 马壮, 高丽红, 柳彦博. 高能激光防护材料技术[M]. 北京: 北京理工大学出版社, 2022: 51-60 .

    MA Zhuang, GAO Lihong, LIU Yanbo. High-energy laser protective materials technology[M]. Beijing: Beijing Institute of Technology Press, 2022: 51-60.

    [2] 强希文, 张建泉, 刘峰, 等. 强激光辐照半导体材料的温升及热应力损伤的理论研究[J]. 中国激光, 2000, 27(8): 709-713. doi: 10.3321/j.issn:0258-7025.2000.08.009

    QIANG Xiwen, ZHANG Jianquan, LIU Feng, et al. Thermal stress damage of semiconductors induced by laser beam[J]. Chinese Journal of Lasers, 2000, 27(8): 709-713. doi: 10.3321/j.issn:0258-7025.2000.08.009

    [3] 张昊春, 宋乃秋, 戴赞恩, 等. 高能激光武器目标打击的多物理场系统仿真[J]. 应用光学, 2017, 38(4): 526-532.

    ZHANG Haochun, SONG Naiqiu, DAI Zanen, et al. Multiple physical fields system simulation for high energy laser weapon target attacking[J]. Journal of Applied Optics, 2017, 38(4): 526-532.

    [4] 宋乃秋, 张昊春, 马超, 等. 高能激光武器毁伤机理多物理场建模[J]. 化工学报, 2016, 67(S1): 359-365. doi: 10.11949/j.issn.0438-1157.20160612

    SONG Naiqiu, ZHANG Haochun, MA Chao. Multiple physical modeling for damage mechanism of high energy laser weapon[J]. CIESC Journal, 2016, 67(S1): 359-365. doi: 10.11949/j.issn.0438-1157.20160612

    [5] 宋乃秋, 张昊春, 王丽, 等. 高能激光武器毁伤威力仿真建模[J]. 兵工学报, 2016, 37(S1): 146-151.

    SONG Naiqiu, ZHANG Haochun, WANG Li. Damage power modeling and simulation of high energy laser weapon[J]. Acta Armamentarii, 2016, 37(S1): 146-151.

    [6] 王译那, 宋镇江, 黄秀军, 等. 关于脉冲激光辐照靶材作用机理的研究[J]. 光电技术应用, 2018, 33(4): 58-63.

    WANG Yina, SONG Zhenjiang, HUANG Xiujun, et al. Study on action mechanism of target material irradiated by pulsed laser[J]. Electro-Optic Technology Application, 2018, 33(4): 58-63.

    [7] 孙铭远, 张昊春, 曲博岩, 等. 激光辐照下卫星筒体部分多物理建模及毁伤效应分析[J]. 应用光学, 2021, 42(3): 542-549. doi: 10.5768/JAO202142.0307003

    SUN Mingyuan, ZHANG Haochun, QU Boyan, et al. Multi-physical modeling and damage effect analysis of satellite cylinders under laser irradiation[J]. Journal of Applied Optics, 2021, 42(3): 542-549. doi: 10.5768/JAO202142.0307003

    [8] 胡鹏, 张建柱, 张飞舟. 高能激光系统内光路热效应建模与仿真[J]. 强激光与粒子束, 2022, 34(1): 115-125.

    HU Peng, ZHANG Jianzhu, ZHANG Feizhou. Modeling and analysis of inner thermal effects in high energy laser system[J]. High Power Laser and Particle Beams, 2022, 34(1): 115-125.

    [9] 赵杨. 多工况微结构热控机理研究[D]. 哈尔滨: 哈尔滨工业大学, 2014.

    ZHAO Yang. Research on multiple conditions microstructures thermal control mechanism[D]. Harbin: Harbin Institute of Technology, 2014.

    [10] 赵杨, 张昊春, 李垚, 等. 激光辐照材料烧蚀特性的数值仿真[J]. 化工学报, 2014, 65(S1): 426-432.

    ZHAO Yang, ZHANG Haochun, LI Yao, et al. Numerical simulation of laser ablation properties of irradiated material[J]. CIESC Journal, 2014, 65(S1): 426-432.

    [11]

    MKRTYCHEV O V, SHEMANIN V G, SHEVTSOV Y V, et al. Investigation of laser ablation destruction of polymer materials[J]. SPIE, 2019: 16-21.

    [12]

    GRIBKOV V A, LATYSHEV S V, PIMENOV V N, et al. Features of metal destruction under pulsed laser and beam-plasma exposure[J]. Inorganic Materials: Applied Research, 2021, 12(2): 361-369. doi: 10.1134/S2075113321020167

    [13] 徐均琪, 杭良毅, 苏俊宏, 等. LaTiO3薄膜的光学及激光损伤特性[J]. 真空科学与技术学报, 2015, 35(9): 1124-1129.

    XU Junqi, HANG Liangyi, SU Junhong, et al. Optical properties and laser damages of LaTiO3 coatings[J]. Chinese Journal of Vacuum Science and Technology, 2015, 35(9): 1124-1129.

    [14] 张锐华. 纳秒激光烧蚀4H-SiC的仿真与实验研究[D]. 西安: 西安理工大学, 2022.

    ZHANG Ruihua. Simulation and experimental study of nanosecond laser ablation of 4H-SiC[D]. Xi'an: Xi'an University of Technology, 2022.

    [15] 朱锦鹏, 马壮, 高丽红, 等. 基于等离子喷涂的反射型激光防护涂层研究[J]. 中国光学, 2017, 10(5): 578-587. doi: 10.3788/co.20171005.0578

    ZHU Jinpeng, MA Zhuang, GAO Lihong, et al. Reflective laser protective coating based on plasma spraying[J]. Chinese Optics, 2017, 10(5): 578-587. doi: 10.3788/co.20171005.0578

    [16] 苏彬, 张琦, 张伟, 等. 空间三结砷化镓太阳电池的激光防护研究[J]. 电源技术, 2022, 46(9): 1030-1033. doi: 10.3969/j.issn.1002-087X.2022.09.020

    SU Bin, ZHANG Qi, ZHANG Wei, et al. Research on laser protection of space three-junction gallium arsenide solar cell[J]. Chinese Journal of Power Sources, 2022, 46(9): 1030-1033. doi: 10.3969/j.issn.1002-087X.2022.09.020

    [17]

    HEGE C S, MULLER O, MERLAT L. Laser protection with optical limiting by combination of polymers with dyes[J]. Journal of Applied Polymer Science, 2018, 136(11): 47150.

    [18]

    ELBASHAR Y H, MOHAMED M A, RAYAN D, et al. Optical spectroscopic analysis of bandpass filter used for laser protection based on cobalt phosphate glass[J]. Journal of Optics (India), 2020, 49(2): 270-276.

    [19]

    PIRRI A N, ROOT R G, WU P K S. Plasma energy transfer to metal surfaces irradiated by pulsed lasers[J]. AIAA Journal, 1978, 16(12): 1296-1304. doi: 10.2514/3.61046

    [20] COMSOL中国. 在COMSOL中模拟激光与材料的相互作用[EB/OL]. (2021-07-05) [2023-09-28]. https://zhuanlan.zhihu.com/p/386071956.

    COMSOL China. Model laser-material interactions in COMSOL[EB/OL]. (2021-07-05) [2023-09-28]. https://zhuanlan.zhihu.com/p/386071956.

    [21] 孔兵, 王昭, 谭玉山. 激光光斑的高斯拟合[J]. 激光技术, 2002(4): 277-278. doi: 10.3969/j.issn.1001-3806.2002.04.008

    KONG Bing, WANG Zhao, TAN Yushan. Gaussian fitting technique of laser spot[J]. Laser Technology, 2002(4): 277-278. doi: 10.3969/j.issn.1001-3806.2002.04.008

    [22]

    FREI W. Thermal ablation modeling removes material[EB/OL]. (2016-03-30) [2023-09-28]. https://cn.comsol.com/blogs/modeling-thermal-ablation-for-material-removal/.

    [23] 李清源. 强激光对飞行器的毁伤效应[M]. 北京: 中国宇航出版社, 2012: 88-93.

    LI Qingyuan. The destructive effect of strong laser on aircraft[M]. Beijing: China Aerospace Press, 2012: 88-93.

  • 期刊类型引用(6)

    1. 刘博涵,赖敏,肖韶荣. 光纤输出远场光斑均匀性检测方法的研究. 应用光学. 2019(02): 356-362 . 本站查看
    2. 刘忆惠,陈建国,甘振华,杜民,高跃明. HPV基因芯片检测装置的匀光照明设计. 光学仪器. 2019(03): 75-80 . 百度学术
    3. 梁孙根,胡淼,张春洋,胡晓粉,毕洲洋,李齐良,卢旸,毕美华,杨国伟,周雪芳. 基于近焦点非球面透镜的LED均匀照明设计. 强激光与粒子束. 2019(09): 11-16 . 百度学术
    4. 叶开,杨玲,甄小琼,郝勤正. 基于积分球光源的能见度测量系统设计及实现. 激光与光电子学进展. 2019(24): 64-72 . 百度学术
    5. 吴超华,李云飞,严建峰. 基于NB-IoT的路灯控制系统设计. 现代电子技术. 2018(24): 5-9 . 百度学术
    6. 张博. 电子通信领域改进背光模组的研究. 现代电子技术. 2017(04): 9-11+15 . 百度学术

    其他类型引用(7)

图(6)  /  表(2)
计量
  • 文章访问数:  263
  • HTML全文浏览量:  69
  • PDF下载量:  94
  • 被引次数: 13
出版历程
  • 收稿日期:  2023-09-27
  • 修回日期:  2023-10-22
  • 网络出版日期:  2023-11-02
  • 刊出日期:  2024-09-14

目录

    /

    返回文章
    返回