Thermal effect of CO2 laser on glass tubes
-
摘要:
激光对单一玻璃管进行热熔封接的过程中,加工质量与玻璃管内的温度分布有密不可分的联系。在考虑表面热辐射、材料内部热传导和空气热对流的情况下,使用COMSOL Multiphysics有限元仿真软件对CO2激光作用高硼硅酸盐玻璃管的温度场进行模拟仿真,分析了温度场分布随时间的变化规律,比较了激光功率、激光光斑半径和旋转速度对玻璃管温度分布的影响。仿真结果表明,激光功率越大,光斑半径越小,玻璃管旋转速度越低,玻璃管温度越高。根据仿真结果,选择合适的加工参数能够达到高硼硅酸盐玻璃管进行激光加工的工艺要求,此项研究为后续玻璃管激光热熔封接的工艺参数选择提供了重要理论依据。
-
关键词:
- 激光加工技术 /
- CO2激光 /
- 温度场 /
- COMSOL Multiphysics /
- 高硼硅酸盐玻璃管
Abstract:In the process of laser heat fusion sealing of a single glass tube, the quality of processing is inextricably linked to the temperature distribution inside the tube. Under the consideration of surface heat radiation, internal heat conduction of material and air heat convection, the finite element simulation software, which called COMSOL Multiphysics was adopted to carry out simulation of the temperature field of high borosilicate glass tube under the action of CO2 laser, the change rule of the temperature field distribution with time was analyzed, and the effects of laser power, laser spot radius and rotation speed on the temperature distribution of the glass tube were compared. Simulation results show that the higher the laser power, the smaller the spot radius, the lower the rotational speed of the glass tube, and the higher the temperature of the glass tube. According to the simulation results, the process requirements of laser processing of high borosilicate glass tube can be achieved by selecting suitable processing parameters. This study provides an important theoretical basis for the selection of process parameters of subsequent glass tube laser hot fusion sealing.
-
-
表 1 高硼硅酸盐玻璃的主要成分
Table 1 Main components of high borosilicate glass
% SiO2 B2O3 Al2O3 Na2O CaO BaO 81 12~13 2~3 4 0~2 0~2 表 2 高硼硅酸盐玻璃的主要物理参数
Table 2 Main physical parameters of high borosilicate glass
Young's modulus
/GpaConstant pressure heat capacity/
(J·kg−1·K−1)Poisson
ratioLinear expansivity/
(1/℃)Density/
(g·cm−1)Heat transfer rate/
(W·m−1·K−1)64 1 0.22 4% 2.23 1.2 -
[1] 李阳, 朱宇峰, 来悦颖, 等. 像增强管激光封接过程中的气密性研究[J]. 应用光学, 2022, 43(6): 1202-1206. doi: 10.5768/JAO202243.0604022 LI Yang, ZHU Yufeng, LAI Yueying, et al. Research on air tightness of image intensifier tube during laser sealing[J]. Journal of Applied Optics, 2022, 43(6): 1202-1206. doi: 10.5768/JAO202243.0604022
[2] 李欣欣, 李兴, 王翼猛, 等. 激光精密加工, 点亮智能制造[J]. 中国激光, 2022, 49(19): 1902001. doi: 10.3788/CJL202249.1902001 LI Xinxin, LI Xing, WANG Yimeng, et al. Laser precision processing lightens intelligent manufacturing[J]. Chinese Journal of Lasers, 2022, 49(19): 1902001. doi: 10.3788/CJL202249.1902001
[3] 杨毅然, 余立冬, 查榕威, 等. 激光清洗汉白玉表面油漆层的实验研究[J]. 应用光学, 2022, 43(2): 352-358. doi: 10.5768/JAO202243.0207003 YANG Yiran, YU Lidong, ZHA Rongwei, et al. Experimental study on laser cleaning of paint layer on white marble surface[J]. Journal of Applied Optics, 2022, 43(2): 352-358. doi: 10.5768/JAO202243.0207003
[4] ZHANG J L, SONG B, WEI Q S, et al. A review of selective laser melting of aluminum alloys: processing, microstructure, property and developing trends[J]. Journal of Materials Science & Technology, 2019, 35(2): 270-284.
[5] COLLINS A R, MILNE D, PRIETO C, et al. Thin glass processing with various laser sources[C]//Laser-based Micro- and Nanoprocessing IX. San Francisco, California, USA: SPIE, 2015: 93511K-1-10.
[6] WILLIAMS E, LAVERY N. Laser processing of bulk metallic glass: a review[J]. Journal of Materials Processing Technology, 2017, 247: 73-91. doi: 10.1016/j.jmatprotec.2017.03.034
[7] CVECEK K, DEHMEL S, MIYAMOTO I, et al. A review on glass welding by ultra-short laser pulses[J]. International Journal of Extreme Manufacturing, 2019, 1(4): 042001. doi: 10.1088/2631-7990/ab55f6
[8] 邢松龄, 刘磊, 邹贵生, 等. 飞秒激光参数对石英玻璃微孔加工的影响[J]. 中国激光, 2015, 42(4): 0403001. doi: 10.3788/CJL201542.0403001 XING Songling, LIU Lei, ZOU Guisheng, et al. Effects of femtosecond laser parameters on hole drilling of silica glass[J]. Chinese Journal of Lasers, 2015, 42(4): 0403001. doi: 10.3788/CJL201542.0403001
[9] SINGLA A K, BANERJEE M, SHARMA A, et al. Selective laser melting of Ti6Al4V alloy: process parameters, defects and post-treatments[J]. Journal of Manufacturing Processes, 2021, 64: 161-187. doi: 10.1016/j.jmapro.2021.01.009
[10] 焦俊科, 王新兵. CO2激光作用下运动石英玻璃的温度分布[J]. 强激光与粒子束, 2007, 19(1): 1-4. JIAO Junke, WANG Xinbing. Temperature distribution of moving quartz glass heated by CO2 laser[J]. High Power Laser and Particle Beams, 2007, 19(1): 1-4.
[11] YANG B J, HE Y C, DAI F, et al. Simulation of temperature field distribution for cutting the temperated glass by ultraviolet laser[J]. IOP Conference Series: Materials Science and Engineering, 2017, 187: 012029. doi: 10.1088/1757-899X/187/1/012029
[12] 黄明贺, 张庆茂, 吕启涛, 等. 紫外激光焊接镀铜玻璃工艺的研究[J]. 中国激光, 2020, 47(10): 1002007. doi: 10.3788/CJL202047.1002007 HUANG Minghe, ZHANG Qingmao, LYU Qitao, et al. UV-laser welding process of copper-plated glass[J]. Chinese Journal of Lasers, 2020, 47(10): 1002007. doi: 10.3788/CJL202047.1002007
[13] 孙劭伟, 齐乃杰, 孔艳, 等. 熔石英玻璃激光损伤的三维应力场研究[J]. 中国激光, 2021, 48(1): 0101001. doi: 10.3788/CJL202148.0101001 SUN Shaowei, QI Naijie, KONG Yan, et al. Three-dimensional stress fields of laser damaged fused silica[J]. Chinese Journal of Lasers, 2021, 48(1): 0101001. doi: 10.3788/CJL202148.0101001
[14] REN G Q, SONG H W, DAN J Q, et al. Thermal analysis and machinability for laser-assisted machining of fused silica[J]. International Journal of Heat and Mass Transfer, 2020, 148: 119078. doi: 10.1016/j.ijheatmasstransfer.2019.119078
[15] ZHAI C T, XU J K, LI Y Q, et al. Study on surface heat-affected zone and surface quality of Ti-6Al-4V alloy by laser-assisted micro-cutting[J]. The International Journal of Advanced Manufacturing Technology, 2020, 109(7): 2337-2352.
[16] GUO Y J, YANG X J, KANG J, et al. Experimental investigations on the laser-assisted machining of single crystal Si for optimal machining[J]. Optics Laser Technology, 2021, 141: 107113. doi: 10.1016/j.optlastec.2021.107113
[17] 许伟静, 舒霞云, 申昆明, 等. 激光辅助金刚石车削单晶硅的温度场建模及加工试验[J]. 应用激光, 2022, 42(11): 37-49. XU Weijing, SHU Xiayun, SHEN Kunming, et al. Temperature field modeling and machining experiment of laser-assisted diamond turning monocrystalline silicon[J]. Applied Laser, 2022, 42(11): 37-49.
[18] 张开达, 宋李兴. 基于COMSOL的单次脉冲激光辐照氧化铝陶瓷温度场分析[J]. 中国水运(下半月), 2022, 22(11): 46-48. ZHANG Kaida, SONG Lixing. Analysis of temperature field in alumina ceramics irradiated by single pulse laser based on COMSOL[J]. China Water Transport, 2022, 22(11): 46-48.
[19] FAN M, ZHOU X, CHEN S, et al. Measurement of thermal properties and numerical simulation of temperature distribution in laser-assisted machining of glass-ceramic[J]. Silicon, 2022, 14(18): 12155-12164.
-
期刊类型引用(1)
1. 刘尚旺, 郜刘阳, 王博. 联合双边滤波器和小波阈值收缩去噪算法研究. 国土资源遥感. 2018(02): 114-124 . 百度学术
其他类型引用(1)