基于参考传感器的OPGW线路低噪声覆冰舞动监测

马丽山, 刘雨, 沈斐, 何炜, 刘世斌, 叶宝安

马丽山, 刘雨, 沈斐, 何炜, 刘世斌, 叶宝安. 基于参考传感器的OPGW线路低噪声覆冰舞动监测[J]. 应用光学, 2024, 45(4): 812-818. DOI: 10.5768/JAO202445.0403007
引用本文: 马丽山, 刘雨, 沈斐, 何炜, 刘世斌, 叶宝安. 基于参考传感器的OPGW线路低噪声覆冰舞动监测[J]. 应用光学, 2024, 45(4): 812-818. DOI: 10.5768/JAO202445.0403007
MA Lishan, LIU Yu, SHEN Fei, HE Wei, LIU Shibin, YE Baoan. Low-noise ice galloping monitoring of OPGW lines based on reference sensors[J]. Journal of Applied Optics, 2024, 45(4): 812-818. DOI: 10.5768/JAO202445.0403007
Citation: MA Lishan, LIU Yu, SHEN Fei, HE Wei, LIU Shibin, YE Baoan. Low-noise ice galloping monitoring of OPGW lines based on reference sensors[J]. Journal of Applied Optics, 2024, 45(4): 812-818. DOI: 10.5768/JAO202445.0403007

基于参考传感器的OPGW线路低噪声覆冰舞动监测

基金项目: 国网青海省电力公司科技项目(SGTYHT/21-JS-223)
详细信息
    作者简介:

    马丽山(1982—),男,高级工程师,主要从事输电线路运维管理。E-mail:qinghaisg100@163.com

    通讯作者:

    叶宝安(1989—),男,助理工程师,主要从事光纤传感技术、智能电网监测技术研究。E-mail:balabala20211012@163.com

  • 中图分类号: TN206

Low-noise ice galloping monitoring of OPGW lines based on reference sensors

  • 摘要:

    针对外场环境下光纤复合架空地线舞动周期监测困难等问题,提出一种基于参考传感器输入的弱反射光栅低噪声舞动监测阵列,通过理论模型推导了参考传感器及监测传感器信号模型及自适应滤波器信号处理步骤,并基于不同相关系数的噪声输入进行仿真,对比分析了监测传感器的降噪效果,最后将低噪声分布式弱反射光栅舞动监测系统布设于西部某自治州220 kV输电线路。外场实验结果表明,经过参考传感器构建输入信号实现自适应滤波后,平均噪声功率谱密度在100 Hz带宽内降低6.34 dB,且阵列监测强度图谱经过算法优化后,能够明显观测到监测档距内呈现约100 m舞动周期事件。该研究成果为进一步完善典型事件分类数据处理及模式识别数据库创造了一定条件,有一定的工程应用前景。

    Abstract:

    Aiming at the difficulties in monitoring the galloping period of optical power grounded waveguide in the external field environment, a low-noise galloping monitoring array based on the input of reference sensor for weak fiber Bragg grating was proposed. The signal models for reference sensor and monitoring sensor were analyzed, and then the signal processing steps of adaptive filter through theoretical model were derived. Besides, by changing noise input with different correlation coefficients, the corresponding simulation results were calculated, so that the noise reduction effect of the monitoring sensor was compared and analyzed. Finally, the low-noise distributed galloping monitoring system based on weak fiber Bragg grating was deployed in a western autonomous prefecture with 220 kV power transmission line. The results of the field experiment show that, after self-adaptive filtering for the input signal constructed by the reference sensor, the average noise power spectral density is reduced by 6.34 dB within 100 Hz bandwidth, the monitoring intensity spectrum is optimized by the algorithm, and the galloping period events of about 100 m can be obviously observed within the monitoring interval. The research results create certain conditions for further improving the typical event classification data processing and pattern recognition database, and prove the effective prospects in engineering application.

  • 图  1   基于参考传感器的OPGW光缆低噪声舞动监测原理图.

    Figure  1.   Schematic diagram of low-noise galloping monitoring of OPGW cable based on reference sensor

    图  2   基于参考传感器的自适应算法流程图

    Figure  2.   Flow chart of adaptive algorithm based on reference sensor

    图  3   不同相关系数下自适应滤波对比结果

    Figure  3.   Comparison results of adaptive filtering under different correlation coefficients

    图  4   基于参考传感器的OPGW光缆低噪声舞动监测阵列施工现场

    Figure  4.   Construction site of low-noise galloping monitoring array of OPGW cable based on reference sensor

    图  5   参考传感器自适应滤波前后时域结果对比

    Figure  5.   Comparison of time-domain results before and after adaptive filtering of reference sensors

    图  6   参考传感器自适应滤波前后频域结果对比

    Figure  6.   Comparison of frequency-domain results before and after adaptive filtering of reference sensors

    图  7   OPGW光缆舞动监测强度图对比结果

    Figure  7.   Comparison results of galloping monitoring intensity images of OPGW cable

  • [1] 许学莲, 韩忠全, 王发科, 等. 气候变暖下柴达木盆地风速、大风和沙尘暴日数的变化特征分析[J]. 青海环境, 2021, 31(1): 26-31. doi: 10.3969/j.issn.1007-2454.2021.01.006

    XU Xuelian, HAN Zhongquan, WANG Fake, et al. Analysis on variation characteristics of wind speed, gale and sandstorm days in Qaidam Basin under climate warming[J]. Journal of Qinghai Environment, 2021, 31(1): 26-31. doi: 10.3969/j.issn.1007-2454.2021.01.006

    [2] 马富齐, 王波, 董旭柱, 等. 面向输电线路覆冰厚度辨识的多感受野视觉边缘智能识别方法研究[J]. 电网技术, 2021, 45(6): 2161-2169.

    MA Fuqi, WANG Bo, DONG Xuzhu, et al. Receptive field vision edge intelligent recognition for ice thickness identification of transmission line[J]. Power System Technology, 2021, 45(6): 2161-2169.

    [3] 蒋兴良, 张志劲, 胡琴, 等. 再次面临电网冰雪灾害的反思与思考[J]. 高电压技术, 2018, 44(2): 463-469.

    JIANG Xingliang, ZHANG Zhijin, HU Qin, et al. Thinkings on the restrike of ice and snow disaster to the power grid[J]. High Voltage Engineering, 2018, 44(2): 463-469.

    [4]

    XIE K, ZHANG C, LI Q, et al. Tracking galloping profile of transmission lines using wireless inertial measurement units[J]. Journal of Computer and Communications, 2015, 3(5): 220-228. doi: 10.4236/jcc.2015.35028

    [5]

    ZHU K J, LIU B, NIU H J, et al. Statistical analysis and research on galloping characteristics and damage for iced conductors of transmission lines in China[C]//2010 International Conference on Power System Technology. Zhejiang, China: IEEE, 2010: 1-5.

    [6]

    FAN W, ZHANG S H, ZHU W D, et al. An efficient dynamic formulation for the vibration analysis of a multi-span power transmission line excited by a moving deicing robot[J]. Applied Mathematical Modelling, 2022, 103: 619-635. doi: 10.1016/j.apm.2021.10.040

    [7]

    FU X, LI H N, LI G, et al. Failure analysis of a transmission line considering the joint probability distribution of wind speed and rain intensity[J]. Engineering Structures, 2021, 233: 111913. doi: 10.1016/j.engstruct.2021.111913

    [8] 王健健, 李永倩. 分布式光纤传感技术在OPGW监测中的应用现状[J]. 光通信研究, 2018(3): 25.

    WANG Jianjian, LI Yongqian. Progress on distributed optical fiber sensing technology in OPGW monitoring[J]. Study on Optical Communications, 2018(3): 25.

    [9]

    YAN Q Z, ZHOU C M, FENG X B, et al. Galloping vibration monitoring of overhead transmission lines by chirped FBG array[J]. Photonic Sensors, 2022, 12(3): 220310. doi: 10.1007/s13320-021-0651-4

    [10]

    LYU A Q, LI Y Q, LI J. Research on strain and temperature measurement of OPGW based on BOTDR[C]//2013 International Conference on Optical Instruments and Technology: Optical Sensors and Applications. Beijing, China: SPIE, 2013: 90441H.

    [11] 范鹏, 王海涛, 张雪峰, 等. 基于BOTDR的OPGW应变实验研究[J]. 光通信技术, 2015, 39(4): 60-62.

    FAN Peng, WANG Haitao, ZHANG Xuefeng, et al. Experimental study of OPGW strain based on BOTDR[J]. Optical Communication Technology, 2015, 39(4): 60-62.

    [12] 覃兆宇, 刘卫新, 潘哲哲, 等. 光纤布里渊分布式输电线路覆冰识别技术[J]. 光电工程, 2016, 43(10): 6-11.

    QIN Zhaoyu, LIU Weixin, PAN Zhezhe, et al. Optical Brillouin distributed ice-coating identification technology on transmission line[J]. Opto-Electronic Engineering, 2016, 43(10): 6-11.

    [13]

    LIU F L, GUO L R, DENG Y S, et al. Application of fiber Bragg grating device in icing monitoring system of transmission lines[J]. Applied Mechanics and Materials, 2014, 543/544/545/546/547: 1030-1034.

    [14] 王磊, 曹敏, 梁仕斌, 等. 应用于输电线路覆冰状态监测的光纤光栅在线监测技术的研究[J]. 电瓷避雷器, 2014(5): 21-24.

    WANG Lei, CAO Min, LIANG Shibin, et al. Study on the fiber Bragg grating online monitor technology applied in icing state monitoring of transmission lines[J]. Insulators and Surge Arresters, 2014(5): 21-24.

    [15] 谢凯, 张洪英, 赵衍双, 等. 导线舞动条件下输电系统结构健康监测的光纤研究[J]. 激光与光电子学进展, 2018, 55(7): 070606.

    XIE Kai, ZHANG Hongying, ZHAO Yanshuang, et al. Structural health monitoring of power transmission system based on optical fiber sensor under transmission line galloping[J]. Laser & Optoelectronics Progress, 2018, 55(7): 070606.

    [16]

    MA G M, LI C G, JIANG J, et al. A novel optical load cell used in icing monitoring on overhead transmission lines[J]. Cold Regions Science and Technology, 2012, 71: 67-72. doi: 10.1016/j.coldregions.2011.10.013

    [17]

    PLOTNIKOV M Y, VOLKOV A V. Adaptive phase noise cancellation technique for fiber-optic interferometric sensors[J]. Journal of Lightwave Technology, 2021, 39(14): 4853-4860.

    [18]

    CAI Y F, YU Z H, MO D L, et al. Noise reduction with adaptive filtering scheme on interferometric fiber optic hydrophone[J]. Optik, 2020, 211: 164648. doi: 10.1016/j.ijleo.2020.164648

    [19]

    LUO Z H, DING S, TAN C, et al. Low-frequency fiber optic hydrophone based on ultra-weak fiber Bragg grating[J]. IEEE Sensors Journal, 2023, 23(11): 11635-11641. doi: 10.1109/JSEN.2023.3266357

    [20]

    PANG Y D, LIU H J, ZHOU C M, et al. Pretreatment of ultra-weak fiber Bragg grating hydrophone array based on cubic spline interpolation using intensity compensation[J]. Sensors, 2022, 22(18): 6814. doi: 10.3390/s22186814

    [21]

    ADLER J, PARMRYD I. Quantifying colocalization by correlation: the Pearson correlation coefficient is superior to the Mander’s overlap coefficient[J]. Cytometry Part A, 2010, 77(8): 733-742.

  • 期刊类型引用(4)

    1. 李彬鹏,茅健. 大尺寸飞机零部件检测技术研究进展. 上海工程技术大学学报. 2021(04): 346-353 . 百度学术
    2. 李晶,车英,宋暖,翟艳男,陈大川,李君. 三维激光雷达共光路液体透镜变焦光学系统设计. 红外与激光工程. 2019(04): 184-192 . 百度学术
    3. 黄慧妍. 无人驾驶激光雷达发射光学系统设计. 光电子技术. 2018(02): 127-131 . 百度学术
    4. 潘力. 激光数据存储系统的设计与实现. 激光杂志. 2018(05): 156-159 . 百度学术

    其他类型引用(3)

图(7)
计量
  • 文章访问数:  78
  • HTML全文浏览量:  16
  • PDF下载量:  51
  • 被引次数: 7
出版历程
  • 收稿日期:  2023-08-06
  • 修回日期:  2023-09-06
  • 网络出版日期:  2024-06-19
  • 刊出日期:  2024-07-30

目录

    /

    返回文章
    返回