超高圆二色性近红外全介质二维手性超表面

王望, 孙雪平, 万希智, 刘卫国

王望, 孙雪平, 万希智, 刘卫国. 超高圆二色性近红外全介质二维手性超表面[J]. 应用光学, 2024, 45(4): 716-722. DOI: 10.5768/JAO202445.0401007
引用本文: 王望, 孙雪平, 万希智, 刘卫国. 超高圆二色性近红外全介质二维手性超表面[J]. 应用光学, 2024, 45(4): 716-722. DOI: 10.5768/JAO202445.0401007
WANG Wang, SUN Xueping, WAN Xizhi, LIU Weiguo. Ultra-high circular all-dielectric near-infrared two-dimensional chiral metasurface[J]. Journal of Applied Optics, 2024, 45(4): 716-722. DOI: 10.5768/JAO202445.0401007
Citation: WANG Wang, SUN Xueping, WAN Xizhi, LIU Weiguo. Ultra-high circular all-dielectric near-infrared two-dimensional chiral metasurface[J]. Journal of Applied Optics, 2024, 45(4): 716-722. DOI: 10.5768/JAO202445.0401007

超高圆二色性近红外全介质二维手性超表面

基金项目: 陕西省教育厅专项计划(22JK0415);陕西省自然科学基础研究计划(2022JQ-676);国家外国专家项目(G2023041018L)
详细信息
    作者简介:

    王望(1997—),男,硕士,主要从事手性超表面研究。E-mail:1121409304@qq.com

    通讯作者:

    刘卫国(1964—),男,博士,教授,主要从事光电子技术及电子材料研究。E-mail:wgliu@163.com

  • 中图分类号: TN29; O436

Ultra-high circular all-dielectric near-infrared two-dimensional chiral metasurface

  • 摘要:

    随着微纳加工技术的发展,手性超表面被证明在光学中有着巨大的应用潜力。传统的金属手性结构,由于其自身存在的欧姆损耗,难以取得理想的圆二色性,而具有良好圆二色性但结构复杂的三维手性结构加工制备困难。采用周期性双Si砖错位拼接的二维全介质手性结构,通过激发介质内部中非正交的面内磁偶极矩和电偶极矩,可以产生明显的光学手性响应,从而得到理想的圆二色性。通过仿真优化,该结构在1 550 nm波长附近可以实现超过0.94的超高圆二色性,并且可以实现对入射的左旋圆偏振光到右旋圆偏振光的转化。该全介质二维手性超表面的圆二色性高、结构简单、制备难度低,在近红外偏振成像等领域有着广泛的应用前景。

    Abstract:

    With the development of micro-nano machining technology, the chiral metasurface has been proved to have great application potential in optics. Traditional metal chiral structures are difficult to obtain ideal circular dichroism due to their own ohmic loss, and three-dimensional chiral structures with good circular dichroism but complex structure are difficult to manufacture. The two-dimensional all-dielectric chiral structure of periodic double-Si bricks was adopted. By exciting the non-orthogonal in-plane magnetic dipole moment and electric dipole moment, the optical chiral response could be generated, and the ideal circular dichroism could be obtained. Through simulation optimization, the structure can achieve ultra-high circular dichroism of more than 0.94 at an operating wavelength near 1 550 nm, and can realize the conversion of incident left-circularly polarized light to right-circularly polarized light. This all-dielectric two-dimensional chiral metasurface has the advantages of high circular dichroism, simple structure and low preparation difficulty, and has a wide application prospect in the field of near infrared polarization imaging.

  • 图  1   全介质手性超表面及结构示意图

    Figure  1.   Schematic diagram of all-dielectric chiral metasurfaces and structures

    图  2   各结构参数对圆偏振光透射率的影响

    Figure  2.   Influence of each parameter structure on transmittance of circularly polarized light

    图  3   透射谱及圆二色性仿真结果

    Figure  3.   Simulation results of transmission spectrum and circular dichroism

    图  4   1 400 nm和1 550 nm波长圆偏振光入射时的手形结构电磁场分布图

    Figure  4.   Electromagnetic field distribution diagram of chiral structure with 1 400 nm and 1 550 nm wavelength circularly polarized light incident

  • [1]

    SCHAFERLING M. Chiral nanophotonics[M]. Switzerland: Springer International Publishing, 2017: 63-75.

    [2]

    YOSHIOKA T, OGATA T, NONAKA T, et al. Reversible-photon-mode full-color display by means of photochemical modulation of a helically cholesteric structure[J]. Advanced Materials, 2005, 17(10): 1226-1229. doi: 10.1002/adma.200401429

    [3]

    CHEN L M, ZHENG J, FENG J, et al. Reversible modulation of plasmonic chiral signals of achiral gold nanorods using a chiral supramolecular template[J]. Chemical Communications, 2019, 55(76): 11378-11381. doi: 10.1039/C9CC06050B

    [4]

    YU N F, AIETA F, GENEVET P, et al. A broadband, background-free quarter-wave plate based on plasmonic metasurfaces[J]. Nano Letters, 2012, 12: 6328-6333. doi: 10.1021/nl303445u

    [5]

    BLANCHARD R, AOUST G, GENEVET P, et al. Modeling nanoscale V-shaped antennas for the design of optical phased arrays[J]. Physical Review B, 2012, 85(15): 155457. doi: 10.1103/PhysRevB.85.155457

    [6]

    BACHMAN K A, PELTZER J J, FLAMMER P D, et al. Spiral plasmonic nanoantennas as circular polarization transmission filters[J]. Optics Express, 2012, 20(2): 1308-1319. doi: 10.1364/OE.20.001308

    [7]

    WANG C J, HU J P, WANG C. Design and numerical simulation of a pixelated full stokes micropolarizer array[J]. SPIE, 2016, 9685: 120-127.

    [8]

    ZHAO Y, ALÙ A. Tailoring the dispersion of plasmonic nanorods to realize broadband optical meta-waveplates[J]. Nano Letters, 2013, 13(3): 1086-1091. doi: 10.1021/nl304392b

    [9]

    MA Z J, LI Y, LI Y, et al. All-dielectric planar chiral metasurface with gradient geometric phase[J]. Optics Express, 2018, 26(5): 6067-6078. doi: 10.1364/OE.26.006067

    [10]

    YU Y, YANG Z Y, LI S X, et al. Higher extinction ratio circular polarizers with hetero-structured double-helical metamaterials[J]. Optics Express, 2011, 19(11): 10886-10894. doi: 10.1364/OE.19.010886

    [11]

    JI R N, WANG S W, LIU X X, et al. Hybrid helix metamaterials for giant and ultrawide circular dichroism[J]. ACS Photonics, 2016, 3(12): 2368-2374. doi: 10.1021/acsphotonics.6b00575

    [12]

    HU J P, ZHAO X N, LI R B, et al. Broadband circularly polarizing dichroism with high efficient plasmonic helical surface[J]. Optics Express, 2016, 24(10): 11023-11032. doi: 10.1364/OE.24.011023

    [13]

    HE C, SUN T, GUO J J, et al. Chiral metalens of circular polarization dichroism with helical surface arrays in mid-infrared region[J]. Advanced Optical Materials, 2019, 7(24): 1901129. doi: 10.1002/adom.201901129

    [14]

    ZHANG S F, ZHOU H Y, LIU B Y, et al. Recent advances and prospects of optical metasurfaces[J]. ACS Photonics, 2023, 10(7): 2045-2063. doi: 10.1021/acsphotonics.2c01539

    [15]

    BEHERA S, JOSEPH J. N-single-helix photonic-metamaterial based broadband optical range circular polarizer by induced phase lags between helices[J]. Applied Optics, 2015, 54(5): 1212-1219. doi: 10.1364/AO.54.001212

    [16]

    YUN J G, KIM S J, YUN H, et al. Broadband ultrathin circular polarizer at visible and near-infrared wavelengths using a non-resonant characteristic in helically stacked nano-gratings[J]. Optics Express, 2017, 25(13): 14260-14269. doi: 10.1364/OE.25.014260

    [17]

    WANG L L, GU Y, CHEN Y J, et al. Enhanced and tunable circular dichroism in the visible waveband by coupling of the waveguide mode and local surface plasmon resonances in double-layer asymmetric metal grating[J]. Chinese Physics B, 2022, 31(11): 118103. doi: 10.1088/1674-1056/ac6494

    [18]

    JIANG H, ZHAO W Y, JIANG Y Y. All-dielectric circular polarizer with nearly unit transmission efficiency based on cascaded tensor Huygens surface[J]. Optics Express, 2016, 24(16): 17738-17745. doi: 10.1364/OE.24.017738

    [19]

    CHEN W B, ABEYSINGHE D C, NELSON R L, et al. Experimental confirmation of miniature spiral plasmonic lens as a circular polarization analyzer[J]. Nano Letters, 2010, 10(6): 2075-2079. doi: 10.1021/nl100340w

    [20]

    YANG S Y, CHEN W B, NELSON R L, et al. Miniature circular polarization analyzer with spiral plasmonic lens[J]. Optics Letters, 2009, 34(20): 3047-3049. doi: 10.1364/OL.34.003047

    [21]

    MIAO J J, WANG Y S, GUO C F, et al. Plasmonic lens with multiple-turn spiral nano-structures[J]. Plasmonics, 2011, 6(2): 235-239. doi: 10.1007/s11468-010-9193-0

    [22]

    ZHANG J R, GUO Z Y, LI R Z, et al. Circular polarization analyzer based on the combined coaxial Archimedes’ spiral structure[J]. Plasmonics, 2015, 10(6): 1255-1261. doi: 10.1007/s11468-015-9917-2

    [23]

    LIU C B, BAI Y, ZHAO Q, et al. Fully controllable pancharatnam-berry metasurface array with high conversion efficiency and broad bandwidth[J]. Scientific Reports, 2016, 6: 34819. doi: 10.1038/srep34819

    [24]

    WU L, YANG Z Y, CHENG Y Z, et al. Giant asymmetric transmission of circular polarization in layer-by-layer chiral metamaterials[J]. Applied Physics Letters, 2013, 103(2): 021903. doi: 10.1063/1.4813487

    [25]

    JING L Q, WANG Z J, YANG Y H, et al. Chiral metamirrors for broadband spin-selective absorption[J]. Applied Physics Letters, 2017, 110(23): 231103.

    [26]

    HU J P, ZHAO Xiaonan, LIN Yu, et al. All-dielectric metasurface circular dichroism waveplate[J]. Scientific Reports, 2017, 7: 41893. doi: 10.1038/srep41893

    [27]

    ZHU A Y, CHEN W T, ZAIDI A, et al. Giant intrinsic chiro-optical activity in planar dielectric nanostructures[J]. Light, Science & Applications, 2018, 7: 17158.

    [28]

    HE C, HU J P, SUN T, et al. Enhanced circular dichroism by all-dielectric multi-size combined chiral structure[J]. SPIE, 2019, 11170: 274-280.

    [29]

    SHI T, DENG Z L, GENG G Z, et al. Planar chiral metasurfaces with maximal and tunable chiroptical response driven by bound states in the continuum[J]. Nature Communications, 2022, 13(1): 4111. doi: 10.1038/s41467-022-31877-1

    [30]

    CHEN Y, DENG H C, SHA X B, et al. Observation of intrinsic chiral bound states in the continuum[J]. Nature, 2023, 613: 474-478. doi: 10.1038/s41586-022-05467-6

    [31]

    MENZEL C, ROCKSTUHL C, LEDERER F. Advanced Jones calculus for the classification of periodic metamaterials[J]. Physical Review A, 2010, 82(5): 053811. doi: 10.1103/PhysRevA.82.053811

图(4)
计量
  • 文章访问数:  114
  • HTML全文浏览量:  4
  • PDF下载量:  57
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-07-17
  • 修回日期:  2023-09-25
  • 网络出版日期:  2024-06-11
  • 刊出日期:  2024-07-30

目录

    /

    返回文章
    返回