Ultrafast heat transfer dynamics induced by femtosecond laser pulse in fused silica
-
摘要:
飞秒激光具有超短脉冲宽度、超高峰值功率的特点,飞秒激光与物质作用表现出的非线性吸收和低热扩散特性,使其在高精密微纳器件加工中有着重要的应用前景。建立了针对飞秒激光脉冲与熔石英作用的瞬态光电离以及非平衡传热的超快动力学模型。通过数值求解该模型获得了飞秒激光单脉冲作用熔石英的载流子密度和非平衡电子与声子温度的时空演化;得到了在非平衡态条件下,电声耦合时间随激光能量密度、脉冲宽度的近线性调控规律。进一步研究得到了瞬态电子热导、热容、电声耦合系数的变化规律,并对上述模拟现象进行了分析和探讨。
Abstract:Femtosecond laser interacts with material shows nonlinear absorption and low thermal diffusion due to the ultrashort pulse width and ultrahigh peak power, which makes it important in the manufacturing of high-precision micro-nano devices. An ultrafast dynamic model for transient photoionization and non-equilibrium heat transfer of femtosecond laser pulses interacting with fused silica was established. By numerical solution, the spatio-temporal evolution of carrier density and non-equilibrium electron and phonon temperature of fused silica excited under femtosecond laser single pulse was obtained, and the nearly linear regulation law of electron-phonon coupling time with laser energy density and pulse width under non-equilibrium conditions was obtained. The variation laws of transient electron thermal conductivity, thermal capacity and electron-phonon coupling coefficient were further investigated in details. And the above simulation results were analyzed and discussed.
-
-
图 4 飞秒激光作用熔石英材料激发区的电子热容、电子热导、电声耦合系数的时间演化(脉冲宽度τp=65 fs,能量密度F=5 J/cm2)
Figure 4. Spatio-temporal evolution of electron thermal capacity, electron thermal conductivity and electron-phonon coupling coefficient in excited region of fused silica irradiated by femtosecond laser (pulse width τp is 65 fs, energy density F is 5 J/cm2)
-
[1] EATON S M, HADDEN J P, BHARADWAJ V, et al. Quantum micro-nano devices fabricated in diamond by femtosecond laser and ion irradiation[J]. Advanced Quantum Technologies,2019,2(5/6):1900006.
[2] CHEN T, WANG W J, TAO T, et al. Multi-scale micro-nano structures prepared by laser cleaning assisted laser ablation for broadband ultralow reflectivity silicon surfaces in ambient air[J]. Applied Surface Science,2020,509:145182. doi: 10.1016/j.apsusc.2019.145182
[3] HUANG J, FU X P, LIU G X, et al. Micro/nano-structures-enhanced triboelectric nanogenerators by femtosecond laser direct writing[J]. Nano Energy,2019,62:638-644. doi: 10.1016/j.nanoen.2019.05.081
[4] WU H, LIU T, XU Z Y, et al. Enhanced bacteriostatic activity, osteogenesis and osseointegration of silicon nitride/polyetherketoneketone composites with femtosecond laser induced micro/nano structural surface[J]. Applied Materials Today,2020,18:100523. doi: 10.1016/j.apmt.2019.100523
[5] OUYANG X, LIU T, ZHANG Y X, et al. Ultrasensitive optofluidic enzyme-linked immunosorbent assay by on-chip integrated polymer whispering-gallery-mode microlaser sensors[J]. Lab on a Chip,2020,20(14):2438-2446. doi: 10.1039/D0LC00240B
[6] DENG J, WANG D N. Ultra-sensitive strain sensor based on femtosecond laser inscribed in-fiber reflection mirrors and vernier effect[J]. Journal of Lightwave Technology,2019,37(19):4935-4939. doi: 10.1109/JLT.2019.2926066
[7] WOLF A, DOSTOVALOV A, BRONNIKOV K, et al. Arrays of fiber Bragg gratings selectively inscribed in different cores of 7-core spun optical fiber by IR femtosecond laser pulses[J]. Optics Express,2019,27(10):13978-13990. doi: 10.1364/OE.27.013978
[8] YONG J L, YANG Q, HUO J L, et al. Underwater gas self-transportation along femtosecond laser-written open superhydrophobic surface microchannels (<100 µm) for bubble/gas manipulation[J]. International Journal of Extreme Manufacturing,2022,4(1):015002. doi: 10.1088/2631-7990/ac466f
[9] YONG J L, SINGH S C, ZHAN Z B, et al. Substrate-independent, fast, and reversible switching between underwater superaerophobicity and aerophilicity on the femtosecond laser-induced superhydrophobic surfaces for selectively repelling or capturing bubbles in water[J]. ACS Applied Materials & Interfaces,2019,11(8):8667-8675.
[10] JALIL S A, AKRAM M, BHAT J A, et al. Creating superhydrophobic and antibacterial surfaces on gold by femtosecond laser pulses[J]. Applied Surface Science,2020,506:144952. doi: 10.1016/j.apsusc.2019.144952
[11] ZHANG J Z, YONG J L, YANG Q, et al. Femtosecond laser-induced underwater superoleophobic surfaces with reversible pH-responsive wettability[J]. Langmuir,2019,35(9):3295-3301. doi: 10.1021/acs.langmuir.8b04069
[12] CHENG Y, YANG Q, FANG Y, et al. Underwater anisotropic 3D superoleophobic tracks applied for the directional movement of oil droplets and the microdroplets reaction[J]. Advanced Materials Interfaces,2019,6(10):1900067. doi: 10.1002/admi.201900067
[13] WANG X C, ZHENG H Y, CHU P L, et al. Femtosecond laser drilling of alumina ceramic substrates[J]. Applied Physics A,2010,101(2):271-278. doi: 10.1007/s00339-010-5816-8
[14] JIANG H, MA C W, LI M, et al. Femtosecond laser drilling of cylindrical holes for carbon fiber-reinforced polymer (CFRP) composites[J]. Molecules,2021,26(10):2953. doi: 10.3390/molecules26102953
[15] LU Y, KAI L, YANG Q, et al. Laser fabrication of nanoholes on silica through surface window assisted nano-drilling (SWAN)[J]. Nanomaterials,2021,11(12):3340. doi: 10.3390/nano11123340
[16] KAI L, CHEN C Y, LU Y, et al. Insight on the regulation mechanism of the nanochannels in hard and brittle materials induced by sparially shaped femtosecond laser[J]. Frontiers in Chemistry,2022,10:973570. doi: 10.3389/fchem.2022.973570
[17] WORTS N, JONES J, SQUIER J. Surface structure modification of additively manufactured titanium components via femtosecond laser micromachining[J]. Optics Communications,2019,430:352-357. doi: 10.1016/j.optcom.2018.08.055
[18] ZHANG Y C, JIANG Q L, CAO K Q, et al. Extremely regular periodic surface structures in a large area efficiently induced on silicon by temporally shaped femtosecond laser[J]. Photonics Research,2021,9(5):839. doi: 10.1364/PRJ.418937
[19] SCHWARZ S, RUNG S, ESEN C, et al. Enhanced ablation efficiency using GHz bursts in micromachining fused silica[J]. Optics Letters,2021,46(2):282-285. doi: 10.1364/OL.415959
[20] ANISIMOV S I, KAPELIOVICH B L, PERELMAN T L. Electron emission from metal surfaces exposed to ultrashort laser pulses[J]. Zhurnal Eksperimentalnoi i Teoreticheskoi Fiziki,1974,66:776-781.
[21] SOKOLOWSKI-TINTEN K, VON DER LINDE D. Generation of dense electron-hole plasmas in silicon[J]. Physical Review B,2000,61(4):2643-2650. doi: 10.1103/PhysRevB.61.2643
[22] RETHFELD B. Unified model for the free-electron avalanche in laser-irradiated dielectrics[J]. Physical Review Letters,2004,92(18):187401. doi: 10.1103/PhysRevLett.92.187401
[23] KLOSSIKA J J, GRATZKE U, VICANEK M, et al. Importance of a finite speed of heat propagation in metals irradiated by femtosecond laser pulses[J]. Physical Review B,1996,54(15):10277-10279. doi: 10.1103/PhysRevB.54.10277
[24] JIANG L, TSAI H L. Plasma modeling for ultrashort pulse laser ablation of dielectrics[J]. Journal of Applied Physics,2006,100(2):23116-23116-7. doi: 10.1063/1.2216882
[25] DU G Q, YU F R, LU Y, et al. Ultrafast thermalization dynamics in Au/Ni film excited by femtosecond laser double-pulse vortex beam[J]. International Journal of Thermal Sciences,2023,187:108208. doi: 10.1016/j.ijthermalsci.2023.108208
[26] JIANG L, TSAI H L. Energy transport and material removal in wide bandgap materials by a femtosecond laser pulse[J]. International Journal of Heat and Mass Transfer,2005,48(3/4):487-499.
[27] RETHFELD B, BRENK O, MEDVEDEV N, et al. Interaction of dielectrics with femtosecond laser pulses: application of kinetic approach and multiple rate equation[J]. Applied Physics A,2010,101(1):19-25. doi: 10.1007/s00339-010-5780-3
[28] RÄMER A, OSMANI O, RETHFELD B. Laser damage in silicon: energy absorption, relaxation, and transport[J]. Journal of Applied Physics,2014,116(5):053508. doi: 10.1063/1.4891633
[29] BURAKOV I M, BULGAKOVA N M, STOIAN R, et al. Theoretical investigations of material modification using temporally shaped femtosecond laser pulses[J]. Applied Physics A,2005,81(8):1639-1645. doi: 10.1007/s00339-005-3320-3
[30] CHIMIER B, UTÉZA O, SANNER N, et al. Damage and ablation thresholds of fused-silica in femtosecond regime[J]. Physical Review B,2011,84(9):094104. doi: 10.1103/PhysRevB.84.094104
-
期刊类型引用(1)
1. 王一童,李红莲,李文铎,李小亭,许旭. 基于偏最小二乘法的CO_2加权组合测量研究. 光电子·激光. 2023(08): 802-808 . 百度学术
其他类型引用(0)