基于莫尔条纹的全周转角精密测量方法

Precision measurement method of full-cycle torsion angle based on Moiré fringe

  • 摘要: 由于将莫尔条纹图进行快速傅里叶变换时会导致频谱泄露,导致无法实现360°的全周精确测量,因此提出基于莫尔条纹的全周转角测量方法并搭建转角测量系统。以1°为步距,利用CMOS相机采集不同宽度的莫尔条纹图像,采用快速傅里叶变换(fast Fourier transform, FFT)对条纹进行处理,得到光栅频谱信息。同时采用汉宁窗能量重心校正算法(Hanning-window energy centrobaric method, HnWECM)校正频谱,得到莫尔条纹图像表征转角的真实有效信息,实现全周精确测量。实验结果表明,该系统可快速精准地实现转角的全周测量,测量范围广,最大误差率为0.243 3%。

     

    Abstract: Due to the leakage of frequency spectrum caused by applying fast Fourier transform to the Moiré fringe image, it becomes challenging to achieve accurate 360° full-cycle measurements. A measurement method of full-cycle torsion angle based on Moiré fringe was proposed and a set of torsion angle measurement system was built. The Moiré fringe images with different widths were acquired by a CMOS camera at 1° intervals, and then the grating frequency spectrum information could be obtained by adopting fast Fourier transform (FFT). In addition, the frequency spectrum was corrected by the Hanning-window energy centrobaric method (HnWECM), and the real and effective information of torsion angle represented by Moiré fringe image could be obtained to achieve precision measurement of full-cycle torsion angle. Experimental results show that the system can quickly and accurately realize the full-cycle measurement of the torsion angle with the advantage of wide measurement range, and its maximum error rate is 0.243 3%.

     

/

返回文章
返回